Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 318-326    DOI: 10.3785/j.issn.1006-754X.2022.00.035
优化设计     
考虑装配变形的精密机床床身优化设计
孙光明(),王奕苗,万仟,弓堃,汪文津,赵坚()
天津城建大学 控制与机械工程学院,天津 300384
Optimization design of precision machine tool bed considering assembly deformation
Guang-ming SUN(),Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO()
School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
 全文: PDF(4601 KB)   HTML
摘要:

为了减小装配变形,提高机床装配精度,提出了一种考虑装配变形的机床床身优化设计方法。首先,分析了机床装配变形部位和床身装配变形机理,研究了影响机床床身装配变形的因素及其影响规律;其次,基于响应面模型和遗传算法,提出了考虑装配变形的机床床身多目标优化方法,给出了优化设计流程;最后,以经典的机床床身为实例,以床身结构参数为设计变量,以床身质量、装配变形幅值、最大静变形量最小和一阶固有频率最大为优化目标,对床身进行优化设计。结果表明:床身长度和宽度方向的筋板数量和筋板厚度均对装配变形有重要影响;床身优化后,可有效减小装配变形,提高装配精度,同时使床身的质量更小、刚度更大和动态性能更优。研究结果不但为机床基础大件的结构分析与优化设计提供了参考,也为其他类似设备的多目标优化提供了理论依据,具有重要的工程实践价值。

关键词: 精密机床装配变形优化设计方法有限元分析    
Abstract:

In order to reduce the assembly deformation and improve the assembly accuracy of machine tool, an optimization design method of machine tool bed considering assembly deformation was proposed. Firstly, the assembly deformation parts of machine tool and assembly deformation mechanism of the machine tool bed were analyzed, and the factors affecting the assembly deformation of machine tool bed and their influence laws were studied; secondly, based on response surface model and genetic algorithm, a multi-objective optimization method of machine tool bed considering assembly deformation was proposed, and the optimization design process was given; finally, taking the classic machine tool bed as an example, taking the structural parameters of the bed as design variables, and taking the minimum of bed mass, assembly deformation amplitude, maximum static deformation and maximum of first-order natural frequency as the optimization objective, the optimal design of the bed was carried out. The results showed that the number and thickness of stiffener plates along the length and width of the bed had an important influence on the assembly deformation; after optimization, the assembly deformation could be effectively reduced, the assembly accuracy could be improved, and the bed mass smaller, the stiffness was bigger, and the dynamic performance was better. The research results not only provide a reference for the structural analysis and optimization design of foundation large parts of machine tool, but also provide a theoretical basis for the multi-objective optimization of other similar equipment, which has important engineering practice value.

Key words: precision machine tool    assembly deformation    optimization design method    finite element analysis
收稿日期: 2021-03-09 出版日期: 2022-07-05
CLC:  TH 122  
基金资助: 天津市教委科研计划项目(2020KJ055)
通讯作者: 赵坚     E-mail: gmsun@tju.edu.cn;zhaojiantcu@163.com
作者简介: 孙光明(1987—),男,河南驻马店人,讲师,博士,从事精密机床误差测量、分析与补偿技术研究,E-mail:gmsun@tju.edu.cnhttp://orcid.org/0000-0002-0961-9964
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙光明
王奕苗
万仟
弓堃
汪文津
赵坚

引用本文:

孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.

Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.035        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/318

图1  机床装配流程
图2  机床装配变形部位
图3  导轨与床身的装配部位
图4  导轨与床身装配部位的有限元模型
图5  导轨与床身装配变形的仿真结果
图6  床身筋板数量对装配变形的影响
图7  床身筋板厚度对装配变形的影响
图8  导轨与床身装配实验
图9  导轨与床身装配实验结果
图10  机床床身多目标优化设计流程
图11  机床床身的初始模型
水平因素
x1/条x2/mmx3/条x4/mmx5/mm
1220020-90
2325125-60
3430230-30
45353350
564044030
表1  机床床身优化正交试验的因素和水平
编号试验因素试验结果
x1/条x2/mmx3/条x4/ mmx5/mmm/tδmax/μmHad/μmf1/Hz
1220020-901.0695.4319.2485.50
2225125-601.2384.6317.8510.00
3230230-301.4623.5317.8517.00
423533501.7382.5012.7523.36
5240440302.0662.1418.4529.20
632013001.2943.4947.3545.75
7325235301.5572.7916.1559.17
8330340-901.8692.2211.7569.80
9335420-601.6892.2110.4586.85
10340025-301.2983.0113.3544.80
11420240-601.6252.5712.9572.87
12425320-301.5672.3212.7598.97
1343042501.8342.1010.4612.29
14435030301.3562.5116.0537.16
15440135-901.5952.3912.2677.59
16520325301.6492.2117.8599.95
17525430-901.9532.0611.7620.40
18530035-601.3852.3711.9526.67
19535140-301.6622.1611.1694.20
2054022001.8301.9810.1701.32
21620435-302.0482.0813.0615.49
2262504001.3852.2810.3510.78
23630120301.5732.0614.2655.56
24635225-901.8071.949.38715.96
25640330-602.0811.8810.2725.48
表2  机床床身优化正交试验结果
参数FmFδmaxFHadFf1
R20.998 60.998 90.995 80.989 0
Radj20.989 00.991 50.907 60.966 4
表3  响应面模型的拟合精度
设计变量优化前优化后
x1/条34
x2/mm2530
x3/条21
x4/mm3530
x5/mm-450
表4  优化前后机床床身的设计变量
图12  优化前后机床床身有限元仿真分析结果的对比
参数原始值优化值变化率/%
m/t1.561.16-25.64
δmax/μm17.210.6-38.37
Had/μm0.030 20.025 7-14.90
f1/Hz559.12662.7818.54
表5  优化前后机床床身动静态特性参数的对比
1 WANG Y, ZHAI W J, YANG L P, et al. Study on the tolerance allocation optimization by fuzzy-set weight-center evaluation method[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(3/4): 317-322. doi:10.1007/s00170-006-0471-0
doi: 10.1007/s00170-006-0471-0
2 ANDOLFATTO L, THIÉBAUT F, LARTIGUE C, et al. Quality- and cost-driven assembly technique selection and geometrical tolerance allocation for mechanical structure assembly[J]. Journal of Manufacturing Systems, 2014, 33(1): 103-115. doi:10.1016/j.jmsy.2013.03.003
doi: 10.1016/j.jmsy.2013.03.003
3 TIAN Wen-jie, LIU Shao-peng, LIU Xing-xing. Accuracy design of high precision machine tools using error sensitivity analysis methodology[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(18): 3401-3413. doi:10.1177/0954406216645625
doi: 10.1177/0954406216645625
4 GUO Jun-kang, LI Bao-tong, LIU Zhi-gang, et al. A new solution to the measurement process planning for machine tool assembly based on Kalman filter[J]. Precision Engineering, 2016, 43: 356-369. doi:10.1016/j.precisioneng.2015.08.016
doi: 10.1016/j.precisioneng.2015.08.016
5 何改云,李素乾,郭龙真,等.机床基础大件支撑预变形设计方法研究[J].机械科学与技术,2018,37(1):70-75.
HE Gai-yun, LI Su-qian, GUO Long-zhen, et al. Research on design methodology for support pre-deformation of large machine tools body[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 70-75.
6 洪军,郭俊康,刘志刚,等.基于状态空间模型的精密机床装配精度预测与调整工艺[J].机械工程学报,2013,49(6):114-121. doi:10.3901/jme.2013.06.114
HONG Jun, GUO Jun-kang, LIU Zhi-gang, et al. Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49(6): 114-121.
doi: 10.3901/jme.2013.06.114
7 陈以磊,邱志惠,郭俊康,等.概念设计阶段机床基础大件质量的优化方法[J].西安交通大学学报,2017,51(7):105-114.
CHEN Yi-lei, QIU Zhi-hui, GUO Jun-kang, et al. Mass optimization of large machine tool components in conceptual design[J]. Journal of Xi'an Jiaotong University, 2017, 51(7): 105-114.
8 SUN Guang-ming, HE Gai-yun, WENG Ling-tao, et al. Research on assembly deformation of machine tool guideway[C]//2018 IEEE International Conference on Advanced Manufacturing (ICAM). New York: IEEE, 2018: 231-234. doi:10.1109/amcon.2018.8615106
doi: 10.1109/amcon.2018.8615106
9 HE Gai-yun, SHI Pan-pan, ZHANG Da-wei, et al. Stiffness matching method for the ball screw feed drive system of machine tools[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2985-2995. doi:10.1007/s12206-020-0630-5
doi: 10.1007/s12206-020-0630-5
10 DENG Cong-ying, YIN Guo-fu, FANG Hui, et al. Dynamic characteristics optimization for a whole vertical machining center based on the configuration of joint stiffness[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5/8): 1225-1242. doi:10.1007/s00170-014-6355-9
doi: 10.1007/s00170-014-6355-9
11 邵灵芝.五轴联动龙门加工中心热变形分析及结构优化[D].南京:东南大学,2017:29-32.
SHAO Ling-zhi. Thermal deformation analysis and structural optimization of five-axis linked gantry machining center[D]. Nanjing: Southeast University, 2017: 29-32.
12 LI Bao-tong, HONG Jun, WANG Zhao, et al. Optimal design of machine tool bed by load bearing topology identification with weight distribution criterion[J]. Procedia CIRP, 2012, 3: 626-631. doi:10.1016/j.procir. 2012.07.107
doi: 10.1016/j.procir. 2012.07.107
13 ZULAIKA J J, CAMPA F J, DE LACALLE L N L. An integrated process:Machine approach for designing productive and lightweight milling machines[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7/8): 591-604. doi:10.1016/j.ijmachtools. 2011.04.003
doi: 10.1016/j.ijmachtools. 2011.04.003
14 LIU Shi-hao, LI Yue, LIAO Yu-lan, et al. Structural optimization of the cross-beam of a gantry machine tool based on grey relational analysis[J]. Structural and Multidisciplinary Optimization, 2014, 50(2): 297-311. doi:10.1007/s00158-013-1041-3
doi: 10.1007/s00158-013-1041-3
15 LIU Shi-hao. Multi-objective optimization design method for the machine tool’s structural parts based on computer-aided engineering[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78: 1053-1065. doi:10.1007/s00170-014-6700-z
doi: 10.1007/s00170-014-6700-z
16 申远,金一,褚彪,等.基于遗传算法的锻压机床多目标优化设计方法[J].中国机械工程,2012,23(3):291-294. doi:10.3969/j.issn.1004-132X.2012.03.009
SHEN Yuan, JIN Yi, CHU Biao, et al. A multi-objective optimization method for forging machine based on genetic algorithm[J]. China Mechanical Engineering, 2012, 23(3): 291-294.
doi: 10.3969/j.issn.1004-132X.2012.03.009
17 邓聪颖,殷国富,方辉,等.基于正交试验的机床结合部动刚度优化配置[J].机械工程学报,2015(19):146-153. doi:10.3901/jme.2015.19.146
DENG Cong-ying, YIN Guo-fu, FANG Hui, et al. Optimal configuration of dynamic stiffness of machine tool joints based on orthogonal experiment[J]. Journal of Mechanical Engineering, 2015, 51(19): 146-153.
doi: 10.3901/jme.2015.19.146
18 ZHANG Zai-feng, SONG Jian-jun, LIU Yuan, et al. An integrated multidisciplinary design optimization method for computer numerical control machine tool development[J]. Advances in Mechanical Engineering, 2015, 7(2): 1-9. doi:10.1177/1687814014568504
doi: 10.1177/1687814014568504
19 徐燕申,张兴朝,牛占文,等.基于元结构和框架优选的数控机床床身结构动态设计研究[J].机械强度,2001,23(1):1-3,110. doi:10.3321/j.issn:1001-9669.2001.01.001
XU Yan-shen, ZHANG Xing-chao, NIU Zhan-wen, et al. Research of dynamic design of machine tools bed structures based on optimization unit structures and frames[J]. Journal of Mechanical Strength, 2001, 23(1): 1-3, 110.
doi: 10.3321/j.issn:1001-9669.2001.01.001
20 孙光明,焦锋,刘建慧.基于元结构的数控钻镗床床身静动特性分析及结构优化[J].现代制造工程,2014(2):41-41,69. doi:10.3969/j.issn.1671-3133.2014.02.011
SUN Guang-ming, JIAO Feng, LIU Jian-hui. Research on static and dynamic characteristic and structure optimization of bearing retainer special NC drilling machine tool bed[J]. Modern Manufacturing Engineering, 2014(2): 41-46, 69.
doi: 10.3969/j.issn.1671-3133.2014.02.011
21 LI Bao-tong, HONG Jun, LIU Zhi-feng. Stiffness design of machine tool structures by a biologically inspired topology optimization method[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 33-44. doi:10.1016/j.ijmachtools.2014.03.005
doi: 10.1016/j.ijmachtools.2014.03.005
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[3] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[4] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[5] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[6] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[7] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[8] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[9] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[10] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[11] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[12] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[13] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[14] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[15] 何改云, 张肖磊, 张大卫, 孙光明. 机床直线轴重复定位精度三维评价方法研究[J]. 工程设计学报, 2019, 26(4): 371-378.