Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 327-338    DOI: 10.3785/j.issn.1006-754X.2022.00.041
优化设计     
转盘式多足仿生机器人的运动学分析及优化
张春燕1(),丁兵1,何志强2,杨杰1
1.上海工程技术大学 机械与汽车工程学院,上海 201600
2.厦门ABB开关有限公司,福建 厦门 361000
Kinematics analysis and optimization of rotary multi-legged bionic robot
Chun-yan ZHANG1(),Bing DING1,Zhi-qiang HE2,Jie YANG1
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
2.Xiamen ABB Switchgear Co. , Ltd. , Xiamen 361000, China
 全文: PDF(7552 KB)   HTML
摘要:

为解决多足机器人控制系统复杂、加工装配困难的问题,设计了一种基于单自由度Jansen连杆机构的转盘式多足仿生机器人,并对其进行运动学分析和优化。首先,运用旋量理论对机器人的单条仿生机械腿进行自由度验证,并运用复数矢量法对仿生机械腿进行运动学求解,得到其足端运动轨迹方程及各关节的转动角度。然后,基于仿生机械腿足端的运动轨迹及其影响因素,分析了其优化方向。接着,提出了转盘式传动机构,并对仿生机械腿的转动关节和足端进行了优化,同时利用SolidWorks软件对转盘式多足仿生机器人的步态进行了时序分析。最后,制作了转盘式多足仿生机器人样机并分析了其在常规路况下的运动能力,验证了其可行性。结果表明,改变曲柄长度和机架水平倾角可优化多足仿生机器人的运动轨迹,使其更符合实际应用所需;转盘式传动机构与多条仿生机械腿的叠加,提升了机器人的环境适应性。研究结果为后续机器人系统的设计及工程应用提供了重要的理论依据。

关键词: 多足仿生机器人旋量理论运动学分析步态优化结构优化    
Abstract:

In order to solve the problems of complex control system and difficult machining and assembly of multi-legged robots, a rotary multi-legged bionic robot based on the single-degree-of-freedom Jansen linkage mechanism was designed, and its kinematics analysis and optimization were carried out. Firstly, the degree of freedom of the single bionic mechanical leg of robot was verified by the screw theory, and the kinematics of the bionic mechanical leg was solved by using the complex vector method, so as to obtain the motion trajectory equation of the foot end and the rotation angle of each joint. Then, based on the motion trajectory of the bionic mechanical leg foot end and its influencing factors, the optimization direction was analyzed. And then, a rotary transmission mechanism was proposed and the rotation joint and foot end of the bionic mechanical leg were optimized, at the same time, the gait of the rotary multi-legged bionic robot was analyzed by using the SolidWorks software. Finally, the rotary multi-legged bionic robot prototype was made and its movement ability under normal road conditions was analyzed to verify its feasibility. The results showed that changing the crank length and the horizontal inclination angle of frame could optimize the motion trajectory of the multi-legged bionic robot, which made it more suitable for practical applications; the superposition of the rotary transmission mechanism and multiple bionic mechanical legs could improve the environmental adaptability of the robot. The research results provide an important theoretical basis for the design and engineering application of the follow-up robot system.

Key words: multi-legged bionic robot    screw theory    kinematics analysis    gait optimization    structure optimization
收稿日期: 2021-08-18 出版日期: 2022-07-05
CLC:  TH 112  
基金资助: 国家自然科学基金资助项目(52005317);上海市研究生科研创新基金资助项目(19KY0151)
作者简介: 张春燕(1980—),女,安徽淮北人,副教授,博士,从事机器人机构学研究,E-mail:cyzhang@sues.edu.cnhttps://orcid.org/0000-0003-1390-4562
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张春燕
丁兵
何志强
杨杰

引用本文:

张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.

Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.041        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/327

图1  仿生机械腿机构原理
图2  仿生机械腿机构各关节的运动螺旋示意
图3  仿生机械腿机构杆组拆分示意
连杆O1AABBCCEEFFD
长度L1L2L3L4L5L6
连杆DADEDO2O2BO2CO1O2
长度L7L8L9L10L11L12
表1  仿生机械腿机构各连杆的长度定义
图4  固定坐标系中Ⅱ级杆组AB-BO2C的位置示意
图5  固定坐标系中Ⅱ级杆组AD-DO2的位置示意
图6  固定坐标系中Ⅱ级杆组CE-EDF的位置示意
长度L1L2L3L4L5L6
预设值2066.774.452.587.665.3
长度L7L8L9L10L11L12
预设值82.548.952.455.353.551.8
表2  仿生机械腿机构各连杆的预设长度 (mm)
图7  仿生机械腿三维模型
图8  仿生机械腿各关键部位的运动轨迹示意
图9  曲柄与机架夹角不同时仿生机械腿足端的位置对比
图10  仿生机械腿足端运动轨迹对比
图11  不同曲柄长度下仿生机械腿足端运动轨迹的变化情况
图12  不同机架水平倾角下仿生机械腿足端运动轨迹的变化情况
技术指标数值
整机质量/kg<2
平均移动速度/(km/h)>1
最大越障高度/mm>30
障碍探测距离/cm>100
无线通信距离/m>5
额定电压/V12
表3  转盘式多足仿生机器人的技术指标要求
图13  转盘式传动机构结构示意
图14  不同对足组合时转盘的传动轴分布示意
图15  仿生机械腿转动关节结构示意
图16  自适应足端结构示意
图17  转盘式多足仿生机器人整体结构示意
图18  转盘式多足仿生机器人的步态示意
图19  转盘式多足仿生机器人的步态时序图
图20  转盘式多足仿生机器人爬坡示意
图21  转盘式多足仿生机器人攀越台阶示意
图22  转盘式多足仿生机器人跨越壕沟示意
图23  转盘式多足仿生机器人样机
参数数值
整机质量/kg1.5
整机尺寸/mm×mm×mm334×220×188
平均移动速度/(km/h)1.73
最大爬坡角度/(°)15
最大越障高度/mm30
最大越障宽度/mm90
电机额定电压/V12
控制板额定电压/V5
超声波探测距离/cm2~450
通信距离/m10
表4  转盘式多足仿生机器人样机参数
图24  转盘式多足仿生机器人平地直行和转向实验现场
图25  转盘式多足仿生机器人爬坡实验现场
图26  转盘式多足仿生机器人复杂路面行走实验现场
1 颜云辉,徐靖,陆志国,等.仿人服务机器人发展与研究现状[J].机器人,2017,39(4):551-564. doi:10.13973/j.cnki.robot.2017.0551
YAN Yun-hui, XU Jing, LU Zhi-guo, et al. Development and research status of humanoid service robots[J]. Robot, 2017, 39(4): 551-564.
doi: 10.13973/j.cnki.robot.2017.0551
2 臧红彬.一种新型的多足仿生机器人的机构设计与研究[J].机械设计与制造,2010(8):103-105. doi:10.3969/j.issn.1001-3997.2010.08.042
ZANG Hong-bin. A new design of bionic multilegged robot mechanical[J]. Machinery Design & Manufacture, 2010(8): 103-105.
doi: 10.3969/j.issn.1001-3997.2010.08.042
3 KOLTER J Z, NG A Y. The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion[J]. International Journal of Robotics Research, 2011, 30(2): 150-174. doi:10.1177/0278364910390537
doi: 10.1177/0278364910390537
4 徐林森,梅涛,宦娟,等.双足机器人水上行走机理研究及推进机构设计[J].机器人,2013,35(3):257-262. doi:10.3724/SP.J.1218.2013.00257
XU Lin-sen, MEI Tao, HUAN Juan, et al. Research on dynamical mechanism and propulsion system of a biped robot walking on water[J]. Robot, 2013, 35(3): 257-262.
doi: 10.3724/SP.J.1218.2013.00257
5 RUBIO F, VALERO F, LLOPIS-ALBERT C. A review of mobile robots: concepts, methods, theoretical framework, and applications[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 172988141983959. doi:10.1177/1729881419839596
doi: 10.1177/1729881419839596
6 BISWAL P, MOHANTY P K. Development of quadruped walking robots: a review[J]. Ain Shams Engineering Journal, 2021, 12(2): 2017-2031. doi:10.1016/j.asej.2020.11.005
doi: 10.1016/j.asej.2020.11.005
7 JAMES P M, PRAKASH A, KALBURGI V, et al. Design, analysis, manufacturing of four-legged walking robot with insect type leg[J]. Materials Today: Proceedings, 2021, 46: 4647-4652. doi:10.1016/j.matpr.2020.10.286
doi: 10.1016/j.matpr.2020.10.286
8 LUNECKAS M, LUNECKAS T, UDRIS D, et al. A hybrid tactile sensor-based obstacle overcoming method for hexapod walking robots[J]. Intelligent Service Robotics, 2021, 14(1): 9-24. doi:10.1007/s11370-020-00340-9
doi: 10.1007/s11370-020-00340-9
9 倪聪,杨崇倡,刘香玉,等.基于Klann连杆的球腿复合机器人的设计与研究[J].机器人,2020,42(4):436-447. doi:10.13973/j.cnki.robot.190513
NI Cong, YANG Chong-chang, LIU Xiang-yu, et al. Design and research on a ball-legged compound robot based on Klann linkage[J]. Robot, 2020, 42(4): 436-447.
doi: 10.13973/j.cnki.robot.190513
10 RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825. doi:10.3182/20080706-5-kr-1001.01833
doi: 10.3182/20080706-5-kr-1001.01833
11 张秀丽.四足机器人节律运动及环境适应性的生物控制研究[D].北京:清华大学,2004:63-98.
ZHANG Xiu-li. Biological-inspired rhythmic motion & environmental adaptability for quadruped robot[D]. Beijing: Tsinghua University, 2004: 63-98.
12 黄博,王鹏飞,孙立宁.基于行为模式的复合运动方式四足机器人研究[J].中国机械工程,2007,18(18):2159-2162. doi:10.3321/j.issn:1004-132x.2007.18.005
HUANG Bo, WANG Peng-fei, SUN Li-ning. Research on a hybrid quadruped robot based on behaviour architecture[J]. China Mechanical Engineering, 2007, 18(18): 2159-2162.
doi: 10.3321/j.issn:1004-132x.2007.18.005
13 陈甫,臧希喆,闫继宏,等.适合航行的六足仿生机器人Spider的研制[J].吉林大学学报(工学版),2011,41(3):765-770.
CHEN Fu, ZANG Xi-zhe, YAN Ji-hong, et al. Development of navigable hexapod biomimetic robot Spider[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 765-770.
14 PAN Yang, GAO Feng, QI Chen-kun, et al. Human tracking strategies for a six-legged rescue robot based on distance and view[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 219-230. doi:10.3901/cjme. 2015.1212.146
doi: 10.3901/cjme. 2015.1212.146
15 XU Yi-lin, GAO Feng, PAN Yang, et al. Method for six-legged robot stepping on obstacles by indirect force estimation[J]. Chinese Journal of Mechanical Engineering, 2016, 29(4): 669-679. doi:10.3901/cjme.2016.0122.012
doi: 10.3901/cjme.2016.0122.012
16 KOMODA K, WAGATSUMA H. Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms[J]. Multibody System Dynamics, 2017, 40(2): 123-153. doi:10.1007/s11044-016-9532-9
doi: 10.1007/s11044-016-9532-9
17 NANSAI S, ELARA M R, IWASE M. Dynamic analysis and modeling of Jansen mechanism[J]. Procedia Engineering, 2013, 64: 1562-1571. doi:10.1016/j.proeng. 2013.09.238
doi: 10.1016/j.proeng. 2013.09.238
18 PATNAIK L, UMANAND L. Kinematics and dynamics of Jansen leg mechanism: a bond graph approach[J]. Simulation Modelling Practice and Theory, 2016, 60: 160-169. doi:10.1016/j.simpat.2015.10.003
doi: 10.1016/j.simpat.2015.10.003
19 黄真,赵永生,赵铁石.高等空间机构学[M].2版.北京:高等教育出版社,2014:28-87.
HUANG Zhen, ZHAO Yong-sheng, ZHAO Tie-shi. Advanced spatial mechanism[M]. 2nd ed. Beijing: Higher Education Press, 2014: 28-87.
20 韩建友,杨通,尹来容,等.连杆机构现代综合理论与方法[M].北京:高等教育出版社,2013:36-90.
HAN Jian-you, YANG Tong, YIN Lai-rong, et al. Modern comprehensive theory and method of linkage mechanism[M]. Beijing: Higher Education Press, 2013: 36-90.
21 柏龙,龙樟,陈晓红,等.连续电驱动四足机器人腿部机构设计与分析[J].机器人,2018,40(2):136-145. doi:10.13973/j.cnki.robot.170443
BAI Long, LONG Zhang, CHEN Xiao-hong, et al. Design and analysis of a leg mechanism for a continuous electrically-driven quadruped robot[J]. Robot, 2018, 40(2): 136-145.
doi: 10.13973/j.cnki.robot.170443
22 陈耀,周建军,胡涛.单自由度腿部机构的四足机器人稳定性研究[J].机械与电子,2015(2):65-69. doi:10.3969/j.issn.1001-2257.2015.02.018
CHEN Yao, ZHOU Jian-jun, HU Tao. Stability analysis of a 1-DOF leg for quadruped robot[J]. Machinery & Electronics, 2015(2): 65-69.
doi: 10.3969/j.issn.1001-2257.2015.02.018
23 NANSAI S, ROJAS N, ELARA M R, et al. A novel approach to gait synchronization and transition for reconfigurable walking platforms[J]. Digital Communications and Networks, 2015, 1(2): 141-151. doi:10.1016/j.dcan. 2015.04.003
doi: 10.1016/j.dcan. 2015.04.003
24 ERDEN M S, LEBLEBICIOGLU K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics and Autonomous System, 2008, 56(3): 199-212. doi:10.1016/j.robot.2007.08.001
doi: 10.1016/j.robot.2007.08.001
25 IJSPEERT A J. Biorobotics: using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346(6206): 196-203. doi:10.1126/science.1254486
doi: 10.1126/science.1254486
26 李奇敏,任灏宇,蒲文东,等.具有弹性连杆机构的四足机器人对角小跑步态控制[J].机器人,2019,41(2):197-205. doi:10.13973/j.cnki.robot.180185
LI Qi-min, REN Hao-yu, PU Wen-dong, et al. Trotting gait control of the quadruped robot with an elastic linkage[J]. Robot, 2019, 41(2): 197-205.
doi: 10.13973/j.cnki.robot.180185
27 徐蔚青,严惠,张吴晖.基于Klann机构的多足连杆步行机器人的仿真优化[J].机械设计,2018,35(5):25-29. doi:10.13841/j.cnki.jxsj.2018.05.005
XU Wei-qing, YAN Hui, ZHANG Wu-hui. Simulation-based optimization on multi-legged walking robot based on Klann mechanism[J]. Journal of Machine Design, 2018, 35(5): 25-29.
doi: 10.13841/j.cnki.jxsj.2018.05.005
28 臧红彬,沈连婠.Theo Jansen仿生腿研究及其机构优化设计[J].机械工程学报,2017,53(15):101-109. doi:10.3901/JME.2017.15.101
ZANG Hong-bin, SHEN Lian-wan. Research and optimization design of mechanism for Theo Jansen bionic leg[J]. Journal of Mechanical Engineering, 2017, 53(15): 101-109.
doi: 10.3901/JME.2017.15.101
[1] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[2] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[3] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.
[4] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[5] 张泽, 陈勇, 李光鑫, 雷勇敢, 阮鸥, 王再宙. 电动汽车变速器电液控制系统总成设计及结构优化[J]. 工程设计学报, 2021, 28(3): 335-343.
[6] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[7] 陶小会, 李国龙, 徐凯, 李传珍. 蜗杆砂轮磨齿机几何误差敏感度分析[J]. 工程设计学报, 2020, 27(1): 111-120.
[8] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[9] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[10] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.
[11] 王慰军, 杨桂林, 张驰, 陈庆盈. 全向移动机器人驱动万向轮的设计与实现[J]. 工程设计学报, 2016, 23(6): 633-638.
[12] 王杰, 钱利勤, 陈新龙, 孙巧雷, 邓自强, 冯定. 自动猫道起升系统动力学模型与分析[J]. 工程设计学报, 2016, 23(5): 437-443,460.
[13] 束智伟,陈新元,邓江洪,詹小辉. 连铸结晶器加渣机布料区域矩形化补偿机构设计[J]. 工程设计学报, 2015, 22(5): 420-424.
[14] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[15] 刘方圆,吕传毅,贺 磊. 模块化护理床的下肢机构设计与运动分析[J]. 工程设计学报, 2014, 21(6): 583-588.