Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (5): 510-517    DOI: 10.3785/j.issn.1006-754X.2018.05.003
创新设计     
芯管式稠油掺稀混合器设计及其掺混性能研究
张园1, 彭振华1, 高定祥1, 任海涛2,3, 唐一鑫2
1. 中国石油化工股份有限公司西北油田分公司 石油工程技术研究院, 新疆 乌鲁木齐 830011;
2. 西南石油大学 机电工程学院, 四川 成都 610500;
3. 油气钻井技术国家工程实验室 钻头研究室, 四川 成都 610500
Design and mixing performance research of core tube heavy oil mixing and diluting mixer
ZHANG Yuan1, PENG Zhen-hua1, GAO Ding-xiang1, REN Hai-tao2,3, TANG Yi-xin2
1. Petroleum Engineering and Technology Research Institute, China Petroleum & Chemical Corporation Northwest Oilfield Branch, Urumqi 830011, China;
2. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China;
3. Drill Bit Research Department, National Engineering Laboratory for Oil and Gas Drilling Technology, Chengdu 610500, China
 全文: PDF(4355 KB)   HTML
摘要:

掺稀降黏是稠油开采工艺中的重要技术,而混合器是增强掺混效果的主要工具。首先,提出了一种新型芯管式稠油掺稀混合器结构,采用芯管微孔外射的方式,实现稀、稠油在环空内掺混,同时根据"文丘里效应"原理设计变截面锥管结构,以形成不规则湍流,实现二次掺混。该混合器具有掺混效果好、对油液压降影响小等优点。其次,利用CFD(computational fluid dynamics,计算流体动力学)仿真技术研究了微孔直径、微孔密度、喷射角度、内锥角和出入口压差等5个因素对掺混不均匀度系数和掺稀比的影响。最后,针对塔河油田采油二厂的稠油掺稀开采工况,设计了一款可对接3 1/2"油管的混合器,并进行了室内掺混实验分析,获得的掺混不均匀度系数为0.023 4,掺稀比为0.290 1,达到了理想水平,这表明该混合器具有良好的掺稀降黏性能。研究成果为提高稠油开采效率和减小抽油设备的故障率提供了新的技术手段。

关键词: 稠油开采掺稀降黏混合器数值模拟结构优化    
Abstract:

Diluting viscosity is an important form for heavy oil recovery technology, while mixer is the main tool to improve mixing effect in this process. Firstly, a new type of core tube heavy oil mixing and diluting mixer structure was proposed. The method of core pipe micro hole ejection was adopted to realize the mixing of thin oil and heavy oil in annular space, meanwhile, the tapered tube structure was designed to form irregular turbulence according to the Venturi effect to achieve twice mixing. The proposed structure had a good mixing effect and little influence on oil hydraulic pressure drop. Secondly, the influence of five factors which included micro pore diameter, micro pore density, injection angle, internal cone angle and inlet and outlet pressure difference on the mixing non-uniformity coefficient and the dilution ratio was studied by CFD (computational fluid dynamics)numerical simulation. Finally, a mixer for butt 3 1/2" tubing was designed according to the actual conditions of heavy oil mixing and diluting in Tahe oilfield and the laboratory experiment was carried out. The obtained mixing non-uniformity coefficient was 0.023 4 and the dilution ratio was 0.290 1, which was achieved the ideal level and indicated that this mixer has a good diluting viscosity performance. The research results provide technical support for improving the recovery efficiency of heavy oil and reduce the failure rate of pumping equipment.

Key words: heavy oil recovery    dilute viscosity    mixer    numerical simulation    structure optimization
收稿日期: 2017-11-08 出版日期: 2018-10-28
CLC:  TE11  
基金资助:

国家科技重大专项资金资助项目(2016ZX05053-004)

通讯作者: 任海涛(1982-),男,黑龙江黑河人,讲师,硕士生导师,硕士,从事岩石破碎力学与钻头研究,E-mail:renhaitao781026@163.com,https://orcid.org/0000-0002-1562-0697     E-mail: renhaitao781026@163.com
作者简介: 张园(1982-),女,新疆维吾尔自治区乌鲁木齐人,工程师,硕士,从事机械采油技术研究,E-mail:zhangyuan821222@163.com,https://orcid.org/0000-0002-7437-1782
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张园
彭振华
高定祥
任海涛
唐一鑫

引用本文:

张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.

ZHANG Yuan, PENG Zhen-hua, GAO Ding-xiang, REN Hai-tao, TANG Yi-xin. Design and mixing performance research of core tube heavy oil mixing and diluting mixer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 510-517.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.05.003        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I5/510

[1] 朱国.塔河稠油掺稀降黏开采工艺研究[D].成都:西南石油大学石油与天然气工程学院,2011:1-2. ZHU Guo. The research of visbreaking with thin oil injected in Tahe oilfield[D]. Chengdu:Southwest Petroleum University, Petroleum Engineering School, 2011:1-2.
[2] 石在虹,薛承瑾,王雅茹,等.一种超深井稠油掺稀混配系统:CN201288542[P].2009-08-12. SHI Zai-hong, XUE Cheng-jin, WANG Ya-ru, et al. A super deep well heavy oil mixing system:CN201288542[P]. 2009-08-12.
[3] 田军,周理志,曹建红,等.稠油掺稀装置、具有该装置的生产管柱及稠油掺稀方法:CN105756631A[P].2016-07-13. TIAN Jun, ZHOU Li-zhi, CAO Jian-hong, et al. Heavy oil dilution device, production column and heavy oil dilution method with the device:CN105756631A[P]. 2016-07-13.
[4] KARSTEN Wilken. Static mixer:US20050078553A1[P]. 2005-04-14.
[5] ZHAO Yu. Static mixer:US20170056846A1[P]. 2017-03-02.
[6] MILTON C. Static mixer:US4222672[P]. 1980-09-16.
[7] 黄志强,刘立焱,李琴,等.一种适用于超稠油掺稀开采的喷射式旋转混油器:CN102155204A[P].2011-08-17. HUANG Zhi-qiang, LIU Li-yan, LI Qin, et al. A spray rotary oil mixer for super heavy oil diluted mining:CN102155204A[P]. 2011-08-17.
[8] 李琴,彭云,黄志强,等.一种适用于稠油掺稀开采的主动旋转动态混合器:CN103306647[P].2013-09-18. LI Qin, PENG Yun, HUANG Zhi-qiang, et al. An driving rotating dynamic mixer for heavy oil sparging:CN103306647[P]. 2013-09-18.
[9] 林涛,赵海洋,张志宏,等.稠油降粘井下高效混配器:CN201218092Y[P].2009-04-08. LIN Tao, ZHAO Hai-yang, ZHANG Zhi-hong, et al. Heavy oil viscosity downhole efficient mixing device:CN201218092Y[P]. 2009-04-08.
[10] 潘昭才,肖云,王春生,等.一种叶片式双向涡流腔室静态混合器:CN201218092Y[P].2009-04-08. PAN Zhao-cai, XIAO Yun, WANG Chun-sheng, et al. A blade two-way vortex chamber static mixer:CN201218092Y[P]. 2009-04-08.
[11] SUNDARARAJ S, SELLADURAI V. Flow and mixing pattern of transverse turbulent jet in venturi-jet mixer[J]. Arabian Journal for Science & Engineering, 2013, 38(12):3563-3573.
[12] HOBBS D M, MUZZIO F J. The Kenics static mixer:a three-dimensional chaotic flow[J]. Chemical Engineering Journal, 1997, 67(3):153-166.
[13] 李琴,彭云,黄志强,等.稠油掺稀井下动态混合器数值模拟研究[J].石油机械,2014,42(4):72-76. LI Qin, PENG Yun, HUANG Zhi-qiang, et al. Numerical simulation of the downhole dynamic mixer for heavy oil thin mixing[J]. China Petroleum Machinery, 2014, 42(4):72-76.
[14] 朱克勤,许春晓.粘性流体力学[M].北京:高等教育出版社,2009:126-128. ZHU Ke-qin, XU Chun-xiao. Viscous fluid mechanics[M]. Beijing:Higher Education Press, 2009:126-128.
[15] ROJAS-SOLORZANO L, ORTEGA P, MCGRATH G. Two-fluid mixing enhancement by using a static turbulence generator[C]//SPE International Thermal Operations and Heavy Oil Symposium, Porlamar, Margarita Island, Mar. 12-14, 2001.
[16] MONTANTE G, CORONEO M, PAGLIANTI A. Blending of miscible liquids with different densities and viscosities in static mixers[J]. Chemical Engineering Science, 2016, 141:250-260.
[17] 王旭,赵春立,韩万里,等.稠油掺稀井下静态混合器数值仿真研究[J].重庆科技学院学报(自然科学版),2015,17(4):72-76. WANG Xu, ZHAO Li-chun, HAN Wan-li, et al. Numerical simulation of heavy oil blending-downhole static mixer[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2015, 17(4):72-76.
[18] 张吕鸿,董佳鑫,周雪松,等.新型三次采油用静态混合器组合的性能研究[J].天津大学学报(自然科学与工程技术版),2015,48(10):894-900. ZHANG Lü-hong, DONG Jia-xin, ZHOU Xue-song, et al. Performance study of static mixer combination for new type of third production[J]. Journal of Tianjin University (Science and Technology), 2015, 48(10):894-900.
[1] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[2] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.
[3] 张泽, 陈勇, 李光鑫, 雷勇敢, 阮鸥, 王再宙. 电动汽车变速器电液控制系统总成设计及结构优化[J]. 工程设计学报, 2021, 28(3): 335-343.
[4] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[5] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[6] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[7] 张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.
[8] 钟功祥, 邹迪, 张兴. 基于CFD与ADAMS的三角转子气动机设计与仿真[J]. 工程设计学报, 2019, 26(3): 305-314.
[9] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[10] 邓嵘, 侯凯, 李孟华, 李向东. 混合式单牙轮钻头破岩性能研究[J]. 工程设计学报, 2018, 25(3): 262-269.
[11] 张露, 武鹏, 吴大转, 洪伟荣. 燃油系统旋涡泵压力脉动的控制研究[J]. 工程设计学报, 2017, 24(4): 395-402.
[12] 杨伟杰, 孟文俊, 邬思敏, 刘宝林, 齐向东. 新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证[J]. 工程设计学报, 2017, 24(2): 174-181.
[13] 王杰, 钱利勤, 陈新龙, 孙巧雷, 邓自强, 冯定. 自动猫道起升系统动力学模型与分析[J]. 工程设计学报, 2016, 23(5): 437-443,460.
[14] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[15] 夏 丽,武 鹏,吴大转. 蜗壳回流孔对自吸泵性能的影响[J]. 工程设计学报, 2015, 22(3): 284-289.