Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (5): 518-524    DOI: 10.3785/j.issn.1006-754X.2018.05.004
创新设计     
多级柔性壁声衬设计及其消声性能研究
杨宇涛, 祝锡晶, 张青青, 刘泽宇
中北大学 机械工程学院, 山西 太原 030051
Design and slience performance research of multistage flexible wall acoustic liner
YANG Yu-tao, ZHU Xi-jing, ZHANG Qing-qing, LIU Ze-yu
School of Mechanical Engineering, North University of China, Taiyuan 030051, China
 全文: PDF(4743 KB)   HTML
摘要:

为有效拓宽声衬的消声频带,针对亥姆霍兹共振器消声选择性强,传统单一声衬消声频带特定且不可调节,缺乏灵活性的缺陷,提出了一种多级腔体的新型柔性壁声衬结构。采用铝合金材质的多级柔性壁代替传统声衬的单级刚性壁,通过施加电压调节柔性腔体体积,使得其消声频带变宽且发生偏移。在选定传递损失作为多级柔性壁声衬消声性能评价指标的基础上,分别进行了柔性壁的静/动态性能仿真与实际性能测试,根据仿真结果与实际测试结果确定了柔性壁具有较好的形变性能及消声性能。介绍了多级柔性壁声衬结构设计方法,而后加工了声衬样品并搭建测试平台进行消声性能测试。实验结果表明:在不施加电压时,多级柔性壁声衬的传递损失在频率为1 386 Hz时达到峰值,即共振频率为1 386 Hz;当驱动电压分别为-100,100和200 V时,其共振频率分别为1 420,1 370和1 364 Hz。通过调节电压幅值,该多级柔性壁声衬的消声频带实现了56 Hz的偏移。研究表明所提出的多级柔性壁声衬结构对噪声的宽频抑制具有一定的作用。

关键词: 多级声衬柔性壁逆压电效应噪声控制    
Abstract:

In order to effectively broaden the silence frequency band of acoustic liner, a new type of flexible wall acoustic liner structure with multistage cavity is proposed to overcome the shortcomings of the strong noise elimination selectivity of Helmholtz resonators, the specific and non-adjustable silence frequency band and inflexibility of the traditional single acoustic liner. The single stage rigid wall of the traditional acoustic liner was replaced by a new type of multistage flexible wall made of aluminum alloy material, and the volume of the flexible cavity was adjusted by applying the voltage, so that its slience frequency band was widened and shifted. Based on selecting transmission loss as the silence performance evaluation index of the new type of multistage flexible wall acoustic liner, the static and dynamic performance simulation and actual performance test of the flexible wall were carried out, respectively. According to the simulation results and the actual test results, it was determined that the flexible wall had better deformation performance and noise reduction performance. Then, through the introduction of multistage flexible wall acoustic liner structure design method, the acoustic liner sample was further processed and the test platform was set up to conduct the performance test. The experimental results showed that the transmission loss of multistage flexible wall acoustic liner was peaked at 1 386 Hz when the voltage was not applied, that was, the resonance frequency was 1 386 Hz. When the driving voltages were -100, 100 and 200 V, respectively, the resonance frequencies were 1 420, 1 370 and 1 364 Hz. By adjusting the voltage amplitude, the slience frequency band of the multistage flexible wall acoustic liner achieved 56 Hz offset. The proposed multistage flexible wall acoustic liner has a certain effect for the suppression of noise in broadband.

Key words: multistage acoustic liner    flexible wall    inverse piezoelectric effect    noise control
收稿日期: 2017-11-15 出版日期: 2018-10-28
CLC:  TB535.2  
基金资助:

国家自然科学基金资助项目(51275490);中北大学校基金资助项目(20171413)

通讯作者: 祝锡晶(1969-),男,山西晋中人,教授,博士生导师,博士,从事精密与特种加工研究,E-mail:yanggary2017@163.com,https://orcid.org/0000-0002-1295-785X     E-mail: yanggary2017@163.com
作者简介: 杨宇涛(1997-),男,山西吕梁人,硕士生,从事精密与特种加工研究,E-mail:791418646@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨宇涛
祝锡晶
张青青
刘泽宇

引用本文:

杨宇涛, 祝锡晶, 张青青, 刘泽宇. 多级柔性壁声衬设计及其消声性能研究[J]. 工程设计学报, 2018, 25(5): 518-524.

YANG Yu-tao, ZHU Xi-jing, ZHANG Qing-qing, LIU Ze-yu. Design and slience performance research of multistage flexible wall acoustic liner[J]. Chinese Journal of Engineering Design, 2018, 25(5): 518-524.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.05.004        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I5/518

[1] 敖庆波,汤慧萍,朱纪磊,等.航空发动机高温声衬材料的研究现状[J].材料导报,2009,23(14):507-509. AO Qing-bo, TANG Hui-ping, ZHU Ji-lei, et al. Research status of high temperature acoustic liner materials for aeroengine[J]. Materials & Information Review, 2009, 23(14):507-509.
[2] 牛凯强.压电致动声衬及其消声性能研究[D].太原:中北大学机械工程学院,2016:25. NIU Kai-qiang.Powder-actuated acoustic liner and its anechoic performance[D]. Taiyuan:North University of China, School of Mechanical Engineering, 2016:25.
[3] 刘文文.赫姆霍兹消声器的消声性能研究[D].哈尔滨:哈尔滨工业大学汽车工程学院,2010:45-47. LIU Wen-wen. Study on the muffler performance of the Helmholtz muffler[D]. Harbin:Harbin Institute of Technology, School of Automobile Engineering, 2010:45-47.
[4] 张立.基于压电技术的飞机壁板结构振动与噪声控制[D].西安:西北工业大学宇航学院,2014:20. ZHANG Li. Study on vibration control for aircraft structure based on piezoelectric technique[D]. Xi'an:Northwestern Polytechnical University, School of Aeronautics, 2014:20.
[5] 张京明,刘文文,崔双双.赫姆霍兹消声器共振腔结构形状对消声性能的影响[J].四川兵工学报,2010,9(2):79-82. ZHANG Jing-ming, LIU Wen-wen, CUI Shuang-shuang. Influence of the shape of the resonant cavity of Helmholtz muffler on the noise cancellation performance[J]. Journal of Sichuan Armed Forces, 2010, 9(2):79-82.
[6] 徐航手,康钟绪,季振林.排气消声器传递损失的实验测量与分析[J].噪声与振动控制,2009,7(4):128-131. XU Hang-shou, KANG Zhong-xu, JI Zhen-lin. Experimental measurement and analysis of transmission loss of exhaust silencers[J]. Noise and Vibration Control, 2009, 7(4):128-131.
[7] 沈丹东,马炳和,邓进军,等.压电式微型合成射流器结构参数优化设计[J].航空学报,2011,15(9):1755-1760. SHEN Dan-dong, MA Bing-he, DENG Jin-jun, et al. Optimization design of structural parameters of piezoelectric micro synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2011, 15(9):1755-1760.
[8] 黄志平,朱敬燕,杨春.船舶舱室噪声控制设计措施[J].中国水运,2016,21(9):10-11,14. HUANG Zhi-ping, ZHU Jing-yan, YANG Chun. Design measures for noise control of ship cabins[J]. China Water Transport, 2016, 21(9):10-11, 14.
[9] 黄全振.压电智能结构振动控制系统研究[M].北京:知识产权出版社,2017:164. HUHAG Quan-zhen. Research on vibration control system of piezoelectric smart structure[M]. Beijing:Intellectual Property Publishing House, 2017:164.
[10] 韩彦南.可调频声衬及其控制技术研究[D].太原:中北大学机械工程学院,2017:65-66. HAN Yan-nan. The research of tunable piezoelectric acoustic liner and its control[D].Taiyuan:North University of China, School of Mechanical Engineering, 2017:65-66.
[11] 余飞.乘用车消声器设计及试验评价[D].武汉:武汉理工大学汽车工程学院,2011:12-16. YU Fei. Passenger car muffler design and test evaluation[D]. Wuhan:Wuhan University of Technology, School of Automobile Engineering, 2011:12-16.
[12] 张铁锋.基于PVDF的智能微夹钳的研究[D].武汉:华中科技大学机械科学与工程学院,2008:33-34. ZHANG Tie-feng. Research on smart micro-clamp based on PVDF[D]. Wuhan:Huazhong University of Science and Technology, School of Mechanical Science and Engineering, 2008:33-34.
[13] 毕嵘.复合式消声器声学特性的分析方法和实验研究[D].合肥:合肥工业大学机械工程学院,2012:66-68. BI Rong. Analytical method and experimental study of acoustic characteristics of composite muffler[D]. Hefei:Hefei University of Technology, School of Mechanical Engineering, 2012:66-68.
[14] 季振林.消声器声学理论与设计[M].北京:科学出版社,2015:27-32. JI Zhen-lin. Acoustic theory and design of mufflers[M]. Beijing:Science Press, 2015:27-32.
[15] 阚君武,唐可洪,王淑云,等.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程,2008,18(1):71-75. KAN Jun-wu, TANG Ke-hong, WANG Shu-yun, et al. Modeling and simulation analysis of piezoelectric cantilever beam generator[J]. Optics and Precision Engineering, 2008, 18(1):71-75.
[16] 邓进军,苑伟政,罗剑.MEMS技术在流动分离主动控制中的应用[J].西北工业大学学报,2010,28(3):381-387. DENG Jin-jun, YUAN Wei-zheng, LUO Jian. Two MEMS actuators for application-oriented active control of flow separation[J]. Journal of Northwestern Polytechnical University, 2010, 28(3):381-387.
[17] 赵斌兴.基于压电检测的光声技术研究[D].成都:电子科技大学光电信息学院,2015:45. ZHAO Bin-xing. Photoacoustic technology based on piezoelectric detection[D]. Chengdu:University of Electronic Science and Technology of China, School of Optoelectronic Information, 2015:45.
[18] 张颖异,李运刚,田颖.先进发动机高温材料的研究进展[J].飞航导弹,2011(12):73-77. ZHANG Ying-yi, LI Yun-gang, TIAN Ying. Research progress on advanced engine high temperature materials[J]. Aerospace Missile, 2011(12):73-77.
[1] 张宪旭, 刘怡然, 李丽君. 基于Helmholtz共振腔阵列的声学超材料研究[J]. 工程设计学报, 2020, 27(4): 441-447.
[2] 乔印虎, 韩江, 张春燕. 电压对压电板壳风力机叶片振动的抑制研究[J]. 工程设计学报, 2017, 24(5): 518-522,529.