Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (1): 27-34    DOI: 10.3785/j.issn.1006-754X.2018.01.004
设计理论与方法学     
基于视觉辅助定位的机械臂运动学参数辨识研究
王晨学, 平雪良, 徐超
江南大学 机械工程学院 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
Research on the kinematic parameter identification of robot arm based on the assistant location by stereo vision
WANG Chen-xue, PING Xue-liang, XU Chao
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
 全文: PDF(1885 KB)   HTML
摘要:

标定机器臂的运动学参数可以有效提高机械臂的绝对定位精度。针对一般平面约束标定方法往往通过手动示教获取测量数据,效率低,提出一种基于视觉辅助定位约束平面的机械臂运动学参数辨识方法。为了弥补双目视觉视场范围狭小的弊端,在约束平面上粘贴3个靶点,以此将对平面的定位等效成对靶点的定位。应用双目视觉系统提取靶点中心并进行立体匹配,得到靶点在机械臂基坐标系下的三维位置信息;同时构建靶点坐标系,以此规划出按一定规律分布的约束点;为了进一步提高标定精度,建立双平面约束误差模型,通过两垂直平面上任意非共线的3个点得到一系列法向量,每一对法向量的数量积为0,即增加了约束方程;利用机械臂对相互垂直的两约束平面自动进行接触式测量,通过改进的最小二乘法辨识出真实的运动学参数误差。实验结果表明,基于双平面约束误差模型,修正运动学参数后,机械臂绝对位置精度由1.234 mm提高到了0.453 mm。该方法实现了数据的自动化测量,大大提高了标定效率,为机械臂批量标定提供了参考,具有工程意义。

关键词: 机械臂运动学标定平面约束双目视觉辅助定位    
Abstract:

The kinematic parameter identification technique of robot arm is effective for enhancing the absolute positioning accuracy. For the low efficiency of the general calibration methods based on planar constraints, which data can only be captured by manual teaching method, an automatic method was proposed for the kinematic parameter identification of the robot arm with the help of a stereo vision system to locate the constraint planes. In order to remedy the limitation of the common field range of two industrial cameras, three target spots were attached to each constraint plane, so the location of each constraint plane could be equivalent to locate their target spots correspondingly. The binocular stereo vision system extracted the center of target spots and then matched them respectively, so that the 3D position information of each target spot in the base coordinate system of the robot arm was calculated. Meanwhile, a target coordinate system was built to plan the constraint points according to a certain rule. To enhance the calibration precision further, an error model based on two planes perpendicular to each other was proposed, then a set of nominal vectors of each plane were calculated by three non-collinear constraint points and the dot product of each pair of nominal vector was zero, namely, there existed an extra restraint in the error model. Then a probe fixed to the end flange of robot arm was used to touch two perpendicular constraint planes automatically, and the actual values of all kinematic parameters could be identified by the improved least squares. Experiments showed that the absolute positioning accuracy of the robot arm was enhanced from 1.234 mm to 0.453 mm after modifying the kinematic parameters based on the proposed error model. The proposed method realizes automatic measurement of data, and highly increases the efficiency of robot arm calibration, and provides a reference for mass calibration, which has great significance of engineering.

Key words: robot arm    kinematic calibration    planar constraint    stereo vision    assistant location
收稿日期: 2017-08-01 出版日期: 2018-02-28
CLC:  TP242.2  
基金资助:

国家自然科学基金资助项目(61305016);江苏省科技重点支撑计划项目(BE2013003-3)

通讯作者: 平雪良(1962-),男,江苏常熟人,教授,硕士生导师,博士,从事CAD/CAM与机电一体化技术研究,E-mail:ping@jiangnan.edu.cn,http://orcid.org/0000-0002-6195-7354     E-mail: ping@jiangnan.edu.cn
作者简介: 王晨学(1993-),男,江苏宜兴人,硕士生,从事机器视觉、机器人标定技术研究,E-mail:2275881541@qq.com,http://orcid.org/0000-0002-6379-0594
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晨学
平雪良
徐超

引用本文:

王晨学, 平雪良, 徐超. 基于视觉辅助定位的机械臂运动学参数辨识研究[J]. 工程设计学报, 2018, 25(1): 27-34.

WANG Chen-xue, PING Xue-liang, XU Chao. Research on the kinematic parameter identification of robot arm based on the assistant location by stereo vision. Chinese Journal of Engineering Design, 2018, 25(1): 27-34.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.01.004        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I1/27

[1] 苏萌.高速SCARA工业机器人的静态误差和动态误差模型研究[D].杭州:浙江大学机械工程学院,2012:1-4. SU Meng. The static and dynamic error model analysis of high-speed SCARA industrial robot[D]. Hangzhou:Zhejiang University, College of Mechanical Engineering, 2012:1-4.
[2] JUDD R P, KNASINSKI A B. A technique to calibrate industrial robots with experimental verification[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):20-30.
[3] 叶声华,王一,任永杰,等.基于激光跟踪仪的机器人运动学参数标定方法[J].天津大学学报,2007,40(2):202-205. YE Sheng-hua, WANG Yi, REN Yong-jie, et al. A robot kinematic calibration method based on laser tracker[J]. Journal of Tianjin University, 2007, 40(2):202-205.
[4] 王琨.提高串联机械臂运动精度的关键技术研究[D].合肥:中国科学技术大学自动化系,2013:66-74. WANG Kun. Research on key technology in improvement of motion accuracy of serial manipulator[D]. Hefei:University of Science and Technology of China, Department of Automation, 2013:66-74.
[5] 周学才,张启先,郑时雄.一种新的机器人机构距离误差模型及补偿算法[J].机器人,1991,13(1):44-49. ZHOU Xue-cai, ZHANG Qi-xian, ZHENG Shi-xiong. A new kind of range error model of robot mechanism and compensation algorithm[J]. Robotics, 1991, 13(1):44-49.
[6] 刘洁,平雪良,齐飞,等.基于视觉跟踪的机器人测量方法与实现[J].应用光学,2016,37(5):686-692. LIU Jie, PING Xue-liang, QI Fei, et al. A robot measurement method based on vision tracking[J]. Journal of Applied Optics, 2016, 37(5):686-692.
[7] SANTOLARIA J, CONTE J, GINÉS M. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9/12):2087-2106.
[8] CONTE J, MAJARENA A C, ACERO R, et al. Performance evaluation of laser tracker kinematic models and parameter identification[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5/8):1353-1364.
[9] NAKAMURA H, ITAYA T, YAMAMOTO K, et al. Robot autonomous error calibration method for off line programming system[C]//IEEE International Conference on Robotics and Automation, Nagoya, May 21-27, 1995.
[10] ZHONG X L, LEWIS J M. A new method for autonomous robot calibration[C]//Robotics and Automation, Nagoya, May 21-27, 1995.
[11] 齐飞,平雪良,刘洁,等.考虑关节柔性误差的机器人参数辨识方法研究[J].机械科学与技术,2017,36(4):512-518. QI Fei, PING Xue-liang, LIU Jie, et al. A robot's parameter identification method with joint flexible errors taken into account[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4):512-518.
[12] JOUBAIR A, BONEV I A.Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering, 2015(40):325-333.
[13] GATLA C S, LUMIA R, WOOD J, et al. An automated method to calibrate industrial robots using a virtual closed kinematic chain[J]. IEEE Transactions on Robotics, 2007, 23(6):1105-1116.
[14] 夏天,孙翰英,范嘉桢,等.虚拟封闭运动链法提高机器人运动学标定精度[J].机械设计与研究,2009,25(2):57-59. XIA Tian, SUN Han-ying, FAN Jia-zhen. Research of industrial robot calibration based on virtual closed kinematic chain[J]. Machine Design and Research, 2009, 25(2):57-59.
[15] CHEN H, FUHLBRIGGE T, SANG C, et al. Practical industrial robot zero offset calibration[C]//IEEE International Conference on Automation Science and Engineering, Washington DC, Aug. 23-26, 2008.
[16] 谭民,徐德,侯增广,等.先进机器人控制[M].北京:高等教育出版社,2007:39-46. TAN Min, XU De, HOU Zeng-guang, et al. Advanced robot control[M]. Beijing:Higher Education Press, 2007:39-46.
[17] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 22:215-221.
[18] IKITS M, HOLLERBACH J M. Kinematic calibration using a plane constraint[C]//IEEE International Conference on Robotics and Automation, New Mexico, Apr. 25, 1997.
[19] 卢钰庭.基于视觉的机器人标定的研究[D].广州:华南理工大学计算机科学与工程学院,2013:30-37. LU Yu-ting. Research on robot calibration based on vision[D]. Guangzhou:South China University of Technology, School of Computer Science and Engineering, 2013:30-37.
[1] 许健, 梅江平, 段晓斌, 罗振军, 陈落根. 一种工业机器人连续轨迹规划过渡算法[J]. 工程设计学报, 2016, 23(6): 537-543.
[2] 周冬冬, 王国栋, 肖聚亮, 洪鹰. 新型模块化可重构机器人设计与运动学分析[J]. 工程设计学报, 2016, 23(1): 74-81.