Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (1): 35-42    DOI: 10.3785/j.issn.1006-754X.2018.01.005
创新设计     
面向USV的AUV自主回收装置设计及其水动力分析
杜俊1,2, 谷海涛1, 孟令帅1,2, 白桂强1,2
1. 中国科学院 沈阳自动化研究所 机器人学国家重点实验室, 辽宁 沈阳 110016;
2. 中国科学院大学, 北京 100049
Design and hydrodynamic analysis of AUV self-recovery device for USV
DU Jun1,2, GU Hai-tao1, MENG Ling-shuai1,2, BAI Gui-qiang1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(6123 KB)   HTML
摘要:

随着海洋无人系统的发展,自主式水下机器人(autonomous underwater vehicle,AUV)的自主布放和回收技术成为亟待突破的瓶颈技术。利用无人水面艇(unmanned surface vehicle,USV)回收AUV成为海洋无人系统协同作业的发展方向之一。目前国外一些研究机构提出的利用USV回收AUV的方案,成熟度都较低。为了实现USV自主回收AUV,设计了一种用于USV动态回收AUV的回收装置。该装置通过绳索连接固定在USV上的绞车,下方连接一个V形翼,用于维持其稳定性,以实现USV在航行中自主收放AUV。首先,介绍了国内外自主回收AUV的研究现状;然后,对回收装置的设计背景、结构形式以及稳定性进行了分析;最后,利用水动力分析软件CFX对AUV在水下对接的动态过程进行了水动力仿真,获得了回收装置在不同工况下对接时的阻力变化情况。通过数值仿真发现:对接过程中,AUV的摩擦阻力逐渐增大;当AUV接近回收装置时,压差阻力迅速减小,但AUV在对接过程中的总阻力是先增加后减小。通过分析可知,所设计的回收装置具有较好的稳定性。研究结果对动态回收AUV具有一定的指导意义。

关键词: 无人水面艇自主式水下机器人回收装置自主回收水动力分析    
Abstract:

With the development of unmanned marine systems, self-launch and self-recovery technology has become a bottleneck for the breakthrough of AUV technology. Recovering AUV with USV is becoming one of development trends for the cooperation of unmanned marine system. Currently, some programs of recovering AUV with USV have been proposed by some foreign research institutions. However, these designs are far from mature. An AUV dynamic recovery device with USV was designed. This device was connected to a winch fixed on the USV with a V-shaped wing attached to the bottom to maintain its stability, so that the device launched and recovered AUV self-during navigation. Firstly, the research status of AUV self-recovery technology was introduced. Then the design background, structure and stability of the recovery device were analyzed. Finally, the dynamic process of AUV underwater docking was simulated using hydrodynamic software CFX, so the change of resistance when the device was docked under different working conditions was obtained. Numerical simulation results showed that, in the process of docking, the friction resistance of the AUV became large gradually. When the AUV approached the recovery device, the pressure resistance decreased rapidly. However, the total resistance of AUV increased first and then decreased. The analysis results showed that the designed recovery device had good stability. The research has guidance value for the dynamic recovery of AUV.

Key words: autonomous underwater vehicle(USV)    unmanned surface vehicle(AUV)    recovery device    self-recovery    hydrodynamic analysis
收稿日期: 2017-08-14 出版日期: 2018-02-28
CLC:  TH12  
基金资助:

海军“十三五”装备预研项目(3020605040302);辽宁省自然科学基金资助项目(2015010160-301);中国科学院科技创新基金资助项目(CXJJ-17-M130);中国科学院装备预研联合基金资助项目(6141A01061601)

通讯作者: 谷海涛(1981-),男,山东菏泽人,副研究员,博士,从事海洋机器人多学科优化设计方法、USV自主收放AUV技术等研究,E-mail:ght@sia.cn     E-mail: ght@sia.cn
作者简介: 杜俊(1992-),男,湖北荆门人,硕士生,从事水下机器人布放和回收技术研究,E-mail:dujun@sia.cn,http://orcid.org/0000-0002-0556-2921
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜俊
谷海涛
孟令帅
白桂强

引用本文:

杜俊, 谷海涛, 孟令帅, 白桂强. 面向USV的AUV自主回收装置设计及其水动力分析[J]. 工程设计学报, 2018, 25(1): 35-42.

DU Jun, GU Hai-tao, MENG Ling-shuai, BAI Gui-qiang. Design and hydrodynamic analysis of AUV self-recovery device for USV. Chinese Journal of Engineering Design, 2018, 25(1): 35-42.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.01.005        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I1/35

[1] 王建斌,王志敏.UUV发展、应用及关键技术[J].信息与电子工程,2007,5(6):476-480. WANG Jian-bin, WANG Zhi-min. A survey of unmanned underwater vehicles[J]. Information and Electronic Engineering, 2007, 5(6):476-480.
[2] 柳晨光,初秀民,吴青,等.USV发展现状及展望[J].中国造船,2014,55(4):194-205. LIU Chen-guang, CHU Xiu-min, WU Qing, et al. A review and prospect of USV research.Shipbuilding of China, 2014, 55(4):194-205.
[3] U.S. Department of Defense. Unmanned systems integrated roadmap FY2013-2038.(2013-12-24).https://info.publicintelligence.net/DoD-UnmannedRoadmap-2013.pdf.
[4] 李坡,张志雄,赵希庆,等.美海军无人作战平台现状及发展趋势分析[J].装备学院学报,2014,25(3):6-9. LI Po, ZHANG Zhi-xiong, ZHAO Xi-qing, et al. Analysis of the status and future trends of the US navy unmanned operational platform[J]. Journal of Equipment Academy, 2014, 25(3):6-9.
[5] MIRANDA Mario. Mobile docking of REMUS-100 equipped with USBL-APS to an unmanned surface vehicle:a performance feasibility study[D]. Florida:Florida Atlantic University, College of Engineering and Computer Science, 2014:52-59.
[6] GISH Lynn Andrew. Design of an AUV recharge system[D]. Massachusetts:Massachusetts Institute of Technology, Department of Ocean Engineering, 2004:91-96.
[7] PISKURA Jacob C, PURCELL Mike, STOKEY Roger, et al. Development of a robust Line Capture, Line Recovery (LCLR) technology for autonomous docking of AUVs[C]//Oceans 2016 MTS/IEEE, Monterey CA, Sep. 19-23, 2016.
[8] DU Jun, GU Hai-tao, MENG Ling-shuai, et al. Optimal design of clamping mechanism for AUV underwater docking device based on kriging model[C]//2nd Asia-Pacific Conference on Intelligent Robot Systems, Wuhan, Jun 16-18, 2017.
[9] CIRCLE B N. Underwater mobile docking of autonomous underwater vehicles//Oceans 2012 MTS/IEEE:Harnessing the Power of the Ocean. Hampton Roads, Virginia, Oct. 14-19, 2012.
[10] EDOARDO I Sarda, MANHAR R Dhanak. A USV-Based automated launch and recovery system for AUVs[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1):37-55.
[11] SARDA Edoardo, Dr MANHAR Dhanak. Unmanned recovery of an AUV from a surface platform manuscript[C]//Oceans IEEE, San Diego, Sep. 23-27, 2013.
[12] 胡志强.海洋机器人水动力数值计算方法及其应用研究[D].沈阳:中国科学院沈阳自动化研究所,2013:85-91. HU Zhi-qiang. Numerical calculation methods for hydrodynamics of unmanned marine vehicles and their application[D]. Beijing:University of Chinese Academy of Sciences, 2013:85-91.
[1] 沈国强, 孔凡胜, 潘雅琼, 吴欣, 施明烁. 唇形密封圈静密封性能快速仿真流程定制技术研究[J]. 工程设计学报, 2019, 26(1): 8-14.
[2] 高卫国, 王伟松, 张大卫, 刘腾, 李金和, 翁凌韬, 齐向阳. 考虑结构热变形的机床进给系统热误差研究[J]. 工程设计学报, 2019, 26(1): 29-38.
[3] 黄志强, 彭珣, 李刚. 可控震源振动器平板-大地接触性质与能量传递研究[J]. 工程设计学报, 2019, 26(1): 102-109.
[4] 高志来, 邱自学, 任东, 崔德友, 徐新朋. 桥式龙门铣床横梁结构设计与优化[J]. 工程设计学报, 2019, 26(1): 56-64.
[5] 毕涛, 石端伟, 王可. 三峡升船机卧倒门支铰座螺栓联结载荷特性分析与强度设计[J]. 工程设计学报, 2018, 25(6): 655-660.
[6] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[7] 范曙远, 王海波, 吴小笛, 张乐, 张龙. 工业装配外骨骼机械臂承重性能研究[J]. 工程设计学报, 2018, 25(6): 697-702.
[8] 胡均平, 彭要明. 基于粒子群优化算法的螺旋钻机变幅机构铰点位置优化[J]. 工程设计学报, 2018, 25(5): 561-566,596.
[9] 张钊, 张继忠. 自动落纱机自适应纱管夹持器设计及其动力学仿真研究[J]. 工程设计学报, 2018, 25(5): 539-545.
[10] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[11] 杨扬, 舒乐时. 基于序贯层次Kriging模型的微型飞行器机身结构设计优化[J]. 工程设计学报, 2018, 25(4): 434-440.
[12] 郑英杰, 牛兴华, 高卫国, 张大卫, 刘腾. 精密机床差异化温控系统设计方法与控制策略研究[J]. 工程设计学报, 2018, 25(4): 472-480.
[13] 杨圣, 李彦, 李文强, 刘龙繁. 基于3M特征的设计知识表达模型[J]. 工程设计学报, 2018, 25(3): 245-252.
[14] 李兆波, 陶庆, 康金胜, 孙文磊, 张开拓, 王寿栋. 基于动作捕捉技术的人体上肢运动舒适性评价[J]. 工程设计学报, 2018, 25(3): 338-345,359.
[15] 曾维俊, 于广东, 雷恒波, 王钟周, 孙海旋. 用于相位衬度CT成像的大型精密转台轴系设计与分析[J]. 工程设计学报, 2018, 25(2): 223-229.