Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 434-440    DOI: 10.3785/j.issn.1006-754X.2018.04.010
优化设计     
基于序贯层次Kriging模型的微型飞行器机身结构设计优化
杨扬1, 舒乐时2
1. 华中农业大学 工学院 农业部长江中下游农业装备重点实验室, 湖北 武汉 430070;
2. 华中科技大学 机械科学与工程学院, 湖北 武汉 430074
Design optimization of micro-aerial vehicle fuselage structure based on sequential hierarchical Kriging model
YANG Yang1, SHU Le-shi2
1. Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(1873 KB)   HTML
摘要:

在基于仿真模型的工程设计优化中,采用高精度、高成本的分析模型会导致计算量大,采用低精度、低成本的分析模型会导致设计优化结果的可信度低,难以满足实际工程的要求。为了有效平衡高精度与低成本之间的矛盾关系,通过建立序贯层次Kriging模型融合高/低精度数据,采用大量低成本、低精度的样本点反映高精度分析模型的变化趋势,并采用少量高成本、高精度的样本点对低精度分析模型进行校正,以实现对优化目标的高精度预测。为了避免层次Kriging模型误差对优化结果的影响,将层次Kriging模型与遗传算法相结合,根据6σ设计准则计算每一代最优解的预测区间,具有较大预测区间的当前最优解即为新的高精度样本点。同时,在优化过程中序贯更新层次Kriging模型,提高最优解附近的层次Kriging模型的预测精度,从而保证设计结果的可靠性。将所提出的方法应用于微型飞行器机身结构的设计优化中,以验证该方法的有效性和优越性。采用具有不同单元数的网格模型分别作为低精度分析模型和高精度分析模型,利用最优拉丁超立方设计分别选取60个低精度样本点和20个高精度样本点建立初始层次Kriging模型,采用本文方法求解并与直接采用高精度仿真模型求解的结果进行比较。结果表明,所提出的方法能够有效利用高/低精度样本点处的信息,建立高精度的层次Kriging模型;本文方法仅需要少量的计算成本就能求得近似最优解,有效提高了设计效率,为类似的结构设计优化问题提供了参考。

关键词: 仿真模型层次Kriging模型结构设计优化设计效率    
Abstract:

In simulation model based engineering design optimization, adopting high-fidelity and high-cost analysis model may cause unaffordable computational cost while adopting low-fidelity and low-cost analysis model may lead to optimization results with low reliability, which is difficult to meet the needs of engineering. In order to balance the contradiction between high accuracy and low cost,a sequential hierarchical Kriging model was established to fuse high/low fidelity data. In the proposed approach, many low-cost and low-fidelity sample points were used to indicate the changing trends of the high-fidelity analysis model, and a small number of high-cost and high-fidelity sample points were used to calibrate the low fidelity analysis model, so as to achieve high-fidelity prediction of the optimization objectives. To avoid the influence of hierarchical Kriging model errors on the optimization results, the hierarchical Kriging model was combined with the genetic algorithm to calculate the prediction interval of each generation of optimal solution according to 6σ criteria. The current optimal solution with a large prediction interval would be selected as a new high fidelity sample point. At the same time, sequentially updating the hierarchical Kriging model in the optimization process could improve the prediction accuracy of the hierarchical Kriging model near the optimal solution, so as to ensure the reliability of design results. The proposed approach was applied to the design optimization of a micro-aerial vehicle fuselage structure to verify its effectiveness and superiority. The grid models with different number of elements were selected as the low-fidelity analysis model and high-fidelity analysis model, respectively. Sixty low-fidelity sample points and twenty high-fidelity sample points were selected by optimal Latin hypercube design (OLHD) to construct the initial hierarchical Kriging model. The design optimization problem was solved by the proposed approach, and the solution results were compared with the results solved by the high-fidelity simulation model. The results showed that the proposed approach could effectively utilize the information of high/low fidelity data to construct hierarchical Kriging model with high accuracy and only a small amount of computational cost was required to obtain the approximate optimal solution. The proposed approach can effectively improve the design efficiency and provide a reference for similar structure design optimization problems.

Key words: simulation model    hierarchical Kriging model    structure design optimization    design efficiency
收稿日期: 2018-02-09 出版日期: 2018-08-28
CLC:  TH122  
基金资助:

国家自然科学基金资助项目(51705182)

作者简介: 杨扬(1987-),女,湖南醴陵人,讲师,博士,从事智能算法、加工参数优化研究,E-mail:yangyang@mail.hzau.edu.cn,https://orcid.org/0000-0003-4408-9986
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨扬
舒乐时

引用本文:

杨扬, 舒乐时. 基于序贯层次Kriging模型的微型飞行器机身结构设计优化[J]. 工程设计学报, 2018, 25(4): 434-440.

YANG Yang, SHU Le-shi. Design optimization of micro-aerial vehicle fuselage structure based on sequential hierarchical Kriging model[J]. Chinese Journal of Engineering Design, 2018, 25(4): 434-440.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.010        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/434

[1] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报,2016,37(11):3197-3225. HAN Zhong-hua. Kriging surrogate model and its application to design optimization:a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225.
[2] SHI R, LIU L, LONG T, et al. Sequential radial basis function using support vector machine for expensive design optimization[J]. AIAA Journal, 2016, 55(1):214-227.
[3] DUTTA S, PAL S K, SEN R. On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression[J]. Precision Engineering, 2016, 43:34-42.
[4] 王国春,成艾国,胡朝辉,等.基于Kriging模型的汽车前部结构的耐撞性优化[J].汽车工程,2011,33(3):208-212. WANG Guo-chun, CHENG Ai-guo, HU Chao-hui, et al. Crashworthiness optimization of vehicle front structure based on Kriging model[J]. Automotive Engineering, 2011, 33(3):208-212.
[5] 高伟钊,莫旭辉,付锐,等.基于Kriging的泡沫填充锥形薄壁结构耐撞性6σ稳健性优化设计[J].固体力学学报,2012,33(4):370-378. GAO Wei-zhao, MO Xu-hui, FU Rui, et al. Optimization of crashworthiness 6σ based on Kriging foam filled tapered thin-walled structure[J]. Chinese Journal of Solid Mechanics, 2012, 33(4):370-378.
[6] 潘志雄.基于径向基函数的优化代理模型应用研究[J].航空工程进展,2010,1(3):242-245. PAN Zhi-xiong. Application of optimal proxy model based on radial basis function[J]. Advances in Aeronautical Science and Engineering, 2010, 1(3):242-245.
[7] ZHOU Q, SHAO X, JIANG P, et al. An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function[J]. Simulation Modelling Practice and Theory, 2015, 59:18-35.
[8] 廖代辉,成艾国,钟志华.基于变复杂度近似模型的汽车安全性和轻量化优化[J].中国机械工程,2013,24(15):2118-2121. LIAO Dai-hui, CHENG Ai-guo, ZHONG Zhi-hua. Vehicle safety and lightweight optimization based on variable complexity approximation model[J]. China Mechanical Engineering, 2013, 24(15):2118-2121.
[9] 谢晖,陈龙,李凡.RBF近似模型在汽车碰撞变复杂度建模中的应用[J].机械科学与技术,2016,35(10):1624-1628. XIE Hui, CHEN Long, LI Fan. RBF approximation model in the automobile collision complexity modeling application[J]. Mechanical Science and Technology, 2016, 35(10):1624-1628.
[10] HU J X, ZHOU Q, JIANG P, et al. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical Kriging[J]. Engineering Optimization, 2018, 50(1):145-163.
[11] HAN Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[12] HOMAIFAR A, QI C X, LAI S H. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4):242-253.
[13] SHU L, JIANG P, ZHOU Q, et al. An on-line variable fidelity metamodel assisted multi-objective genetic algorithm for engineering design optimization[J]. Applied Soft Computing, 2018, 66:438-448.
[14] KOCH P N, YANG R J, GU L. Design for six sigma through robust optimization[J]. Structural and Multidisciplinary Optimization, 2004, 26(3/4):235-248.
[15] NGUYEN J, PARK S, ROSEN D. Heuristic optimization method for cellular structure design of light weight components[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(6):1071-1078.
[16] PARK J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1):95-111.
[17] 陈代君,熊世峰.嵌套拉丁超立方设计的优化[J].系统科学与数学,2017,37(1):53-65. CHEN Dai-jun, XIONG Shi-feng. Optimization of nested Latin hypercube design[J]. Journal of Systems Science and Mathematical Sciences, 2017, 37(1):53-65.
[1] 王川, 方海辉, 那枫, 金浩, 王安义, 刘静. 基于升沉补偿的钻柱-采油树纵向下放安装研究[J]. 工程设计学报, 2020, 27(4): 478-486.
[2] 刘芳华, 李盈. 船舶运动模拟器ADRC控制系统的设计与仿真[J]. 工程设计学报, 2010, 17(1): 46-50.