机器人与机构设计 |
|
|
|
|
基于人体动力学分析的下肢外骨骼助力设计及机构优化 |
陈贵亮( ),李子浩,蔡超,李永超,杨冬( ) |
河北工业大学 机械工程学院,天津 300401 |
|
Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis |
Guiliang CHEN( ),Zihao LI,Chao CAI,Yongchao LI,Dong YANG( ) |
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China |
引用本文:
陈贵亮,李子浩,蔡超,李永超,杨冬. 基于人体动力学分析的下肢外骨骼助力设计及机构优化[J]. 工程设计学报, 2023, 30(3): 362-371.
Guiliang CHEN,Zihao LI,Chao CAI,Yongchao LI,Dong YANG. Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis[J]. Chinese Journal of Engineering Design, 2023, 30(3): 362-371.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.037
或
https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/362
|
1 |
TUDOR-LOCKE C, JOHNSON W D, KATZMARZYK P T. Accelerometer-determined steps per day in US adults[J]. Medicine & Science in Sports & Exercise, 2009, 41(7): 1384-1391.
|
2 |
ZIEGLER J, REITER A, GATTRINGER H, et al. Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data[J]. Medical Engineering & Physics, 2020, 84(3): 193-202.
|
3 |
GROOTE F D, FALISSE A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait[J]. Proceedings of the Royal Society B: Biological Sciences, 2021, 288(1946): 2432-2442.
|
4 |
AN K, LIU Y, LI Y, et al. Energetic walking gaits studied by a simple actuated inverted pendulum model[J]. Journal of Mechanical Science & Technology, 2018, 32(5): 2273-2281.
|
5 |
YE D, GALIANA I, ASBECK A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130.
|
6 |
UMBERGER B R, RUBENSON J. Understanding muscle energetics in locomotion: new modeling and experimental approaches[J]. Exercise & Sport Sciences Reviews, 2011, 39(2): 59-67.
|
7 |
BARAZESH H, SHARBAFI M A. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking[J]. Bioinspiration & Biomimetics, 2020, 15(3): 1024-1042.
|
8 |
HAUFE F L, WOLF P, RIENER R, et al. Biomechanical effects of passive hip springs during walking[J]. Journal of Biomechanics, 2020, 98: 109432.
|
9 |
SHEN Z, SAM S, ALLISON G, et al. A simulation-based study on a clutch-spring mechanism reducing human walking metabolic cost[J]. International Journal of Mechanical Engineering and Robotics Research, 2018, 7(1): 55-60.
|
10 |
胡冰山,程科,陆盛,等.变刚度储能助力髋外骨骼设计及助力效果仿真[J].系统仿真学报,2022,34(5):1090-1100. doi:10.16182/j.issn1004731x.joss.20-0994 HU B S, CHENG K, LU S, et al. Design of variable stiffness energy storage walking assist hip exoskeleton and simulation of assistance effect[J]. Journal of System Simulation, 2022, 34(5): 1090-1100.
doi: 10.16182/j.issn1004731x.joss.20-0994
|
11 |
DORN T W, SCHACHE A G, PANDY M G. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance[J]. Journal of Experimental Biology, 2012, 215(11): 1944-1959.
|
12 |
LI Z, LIU H, YIN Z, et al. Muscle synergy alteration of human during walking with lower limb exoskeleton[J]. Frontiers in Neuroscience, 2018, 29(12): 1050-1059.
|
13 |
ARNOLD E M, DELP S L. Fibre operating lengths of human lower limb muscles during walking[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1570): 1530-1539.
|
14 |
SAWICKI G S, KHAN N S. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(5): 914-923.
|
15 |
LEE H J, LEE S, CHANG W H, et al. A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 252(9): 1549-1557.
|
16 |
NASIRI R, RAYATI M, AHMADABADI M N. Feedback from mono-articular muscles is sufficient for exoskeleton torque adaptation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2097-2106.
|
17 |
ZAJAC F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews in Biomedical Engineering, 1989, 17(4): 359-411.
|
18 |
BOGEY R A, BARNSE L A. An EMG-to-force processing approach for estimating in vivo hip muscle forces in normal human walking[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 25(8): 1172-1179.
|
19 |
WENINHANDL J T, BENNETT H J. Musculoskeletal model choice influences hip joint load estimations during gait[J]. Journal of Biomechanics, 2019, 91: 124-132.
|
20 |
CHEN W B, WU S, ZHOU T C, et al. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton[J]. Bioinspiration & Biomimetics, 2019, 14(1): 016012.
|
21 |
王存金,董林杰,李杰,等.基于人行走能耗分析的踝关节外骨骼设计[J].机械工程学报,2021,57(19):79-92. doi:10.3901/jme.2021.19.008 WANG C J, DONG L J, LI J, et al. Design of ankle exoskeleton based on analysis on energy cost of human walking[J]. Journal of Mechanical Engineering, 2021, 57(19): 79-92.
doi: 10.3901/jme.2021.19.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|