Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (2): 172-180    DOI: 10.3785/j.issn.1006-754X.2016.02.011
建模、分析、优化和决策     
基于MATLAB的3-RPS并联机构控制系统仿真
王爱国1,2, 陈健伟3
1. 合肥工业大学 机械与汽车工程学院, 安徽 合肥 230009;
2. 安徽机电职业技术学院, 安徽 芜湖 241002;
3. 江西理工大学 机电工程学院, 江西 赣州 341000
Simulation for control system of 3-RPS parallel mechanism based on MATLAB
WANG Ai-guo1,2, CHEN Jian-wei3
1. School of Mechanical and Automotive Engineering, Hefei University of Technology, Hefei 230009, China;
2. Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241002, China;
3. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(4438 KB)   HTML
摘要: 针对传统螺旋法求解并联机构Jacobian矩阵的缺陷,提出了一种基于并联机构微运动分析的微位移法.该微位移法在求解过程中可避免求解超越方程组的难题,且得到的Jacobian矩阵为非奇异方阵.同时,针对并联机构传统控制器轨迹跟踪精度低的问题,设计了一种基于并联机构动力学方程和比例切换控制律的滑模变结构控制器(SMC).首先,建立机构的MATLAB/SimMechanics仿真分析模型,采用微位移法求解并联机构的Jacobian矩阵,为控制系统提供理论参考输入值.其次,设计SMC控制器,运用Lyapunov函数证明控制器的稳定性;最后,分别建立机构PID控制和SMC控制系统的MATLAB/Simulink框图,对其进行仿真分析与对比.结果表明:SMC控制器的轨迹跟踪精度比PID控制器的精度高,稳态误差小,且鲁棒性强,响应速度快,从而验证了SMC控制的有效性.
关键词: 3-RPS并联机构微位移法PID控制SMC控制MATLAB仿真    
Abstract: Owing to the defects of traditional spiral method to solve Jacobian matrix of parallel mechanism,a micro-displacement method was put forward based on micro-motion analysis of 3-RPS parallel mechanism.The method could avoid the problem of transcendental equation group in the solving process,and the Jacobian matrix acquired was a non singular matrix.At the same time,aiming at the low trajectory tracking precision of conventional controller of parallel mechanism,the sliding model controller (SMC) was designed by the dynamic equation of 3-RPS parallel mechanism and proportional switching control law.Firstly,the MATLAB/SimMechanics simulation analysis model of 3-RPS parallel mechanism was presented and the Jacobian matrix of 3-RPS parallel manipulator was solved by micro-displacement method,which was the theoretical reference value for control system.Secondly,the SMC controller was designed,then the stability of SMC controller was proven based on the Lyapunov function.Finally,the MATLAB/Simulink model of PID controller and SMC controller were respectively established,and the simulation analysis and comparison were performed.The results show that the SMC controller has higher trajectory tracking precision,smaller steady-state error,faster response speed and better robustness than that of PID controller,so the effectiveness of SMC controller is verified.
Key words: 3-RPS parallel manipulator    micro-displacement method    PID controller    SMC controller    MATLAB simulation
收稿日期: 2015-12-22 出版日期: 2016-04-28
CLC:  TP15  
基金资助:

国家自然科学基金资助项目(51175135);安徽省自然科学基金重点资助项目(KJ2016A138).

作者简介: 王爱国(1976—),男,安徽合肥人,博士生,副教授,从事控制技术研究,E-mail:wangaiguo_2003@163.com.http://orcid.org//0000-0003-4621-9051
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王爱国
陈健伟

引用本文:

王爱国, 陈健伟. 基于MATLAB的3-RPS并联机构控制系统仿真[J]. 工程设计学报, 2016, 23(2): 172-180.

WANG Ai-guo, CHEN Jian-wei. Simulation for control system of 3-RPS parallel mechanism based on MATLAB. Chinese Journal of Engineering Design, 2016, 23(2): 172-180.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.02.011        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I2/172

[1] 黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:36-37. HUANG Zhen,KONG Ling-fu,FANG Yue-fa.Theory and control of parallel robot mechanism[M].Beijing:Mechanical Industry Press,1997:36-37.

[2] STEWART D.A platform with six-degrees-of-freedom[J].Proceeding of the Institute of Mechanical Engineering,1965,180(5):371-386.

[3] TSAI L W.Direct kinematic analysis of a 3-RPS parallel manipulator[J].Mechanical and Machine Theory,2003,38(1):71-83.

[4] 朱大昌,刘云鸿,冯文结.3-RPC型并联机器人模糊PID控制系统研究[J].机械传动,2014,38(2):114-117. ZHU Da-chang,LIU Yun-hong,FENG Wen-jie.Research on the fuzzy PID control system of 3-RPC parallel robot[J].Mechanical Transmission,2014,38(2):114-117.

[5] PARK Minkyn,LEE Min-cheol,GO Seok-jo.The design of sliding mode controller with perturbation observer for a 6-DOF parallel manipulator[C]//Proceedings of ISIE 2001.Pusan,Korea,March 10-14,2001:1502-1508.

[6] WU Hua-peng,HANDROOS Heikki.Hybrid fuzzy self-tunning PID controller for a parallel manipulator[C]//Proceedings of the 5th Word Congress on Intelligent Control and Automation.Hangzhou,China,June 15-19,2004:2545-2550.

[7] 杨香兰.6-DOF并联机器人动力学建模及模糊变结构控制[D].河北:燕山大学机械工程学院,2001:28-31. YANG Xiang-lan.The dynamics modeling and fuzzy variable structure control for 6-DOF parallel robot[D].Hebei:Yanshan University,College of Mechanical Engineering,2001:28-31.

[8] SHIJING Li,ZUREN Feng,HAO Feng.Variable structure control for 6-6 parallel manipulators based on CMAC[C]// Proceedings of 4th World Congress on Intelligent Control and Automation.Shanghai,China,June 15-19,2002:1939-1944.

[9] 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:25-30. LIU Jin-kun.MATLAB simulation for sliding mode variable structure control[M].Beijing:Tsinghua University Press,2005:25-30.

[10] CHENG C,CHEN S H. Design of adaptive variable structure controllers with application to robot manipulators[C]// Proceedings of 5th World Congress on Intelligent Control and Automation.June 15-19,2004:4904-4908.

[11] 张立勋.机电系统建模与仿真[M].哈尔滨:哈尔滨工业大学出版社,2009:140-147. ZHANG Li-xun.Modeling and simulation of mechanical and electrical systems[M].Harbin:Harbin Institute of Technology Press,2009:140-147.

[12] 朱大昌,李培,顾起华.全柔顺并联机构理论[M].北京:冶金工业出版社,2013:153-163. ZHU Da-chang,LI Pei,GU Qi-hua.The theory of compliant parallel mechanism[M].Beijing:Metallurgical Industry Press,2013:153-163.

[13] VICENTE P V,SUGURN A.Dynamic sliding PID control for tracking of robot manipulators:theory and experiments[J].IEEE Transaction on Robotics and Automation,2003,19(6):967-976.
[1] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[2] 赵爱玲, 张海峰, 侯君. 基于单片机的熏蒸温度微分先行控制器[J]. 工程设计学报, 2010, 17(5): 377-380.
[3] 周如林, 龚国芳, 施虎, 朱北斗, 刘峰. 盾构推进系统液压缸的同步协调控制[J]. 工程设计学报, 2009, 16(6): 457-461.
[4] 陈兆兵, 郭劲, 姜伟伟. 基于DSP的紫外/红外复合告警系统的伺服设计[J]. 工程设计学报, 2009, 16(1): 7-11.
[5] 侯敬巍, 赵丁选, 倪 涛. 液压二自由度力反馈操纵杆设计[J]. 工程设计学报, 2008, 15(2): 90-93.
[6] 李鸣, 胡先志, 付辉, 黄惠娟. 基于电加热炉的温度控制策略[J]. 工程设计学报, 2007, 14(6): 482-485.
[7] 雷 勇, 李群明, 段吉安, 黄明辉. 新型磁悬浮转子系统的专家PID控制研究[J]. 工程设计学报, 2007, 14(1): 16-20.
[8] 刘祚时, 邝先验, 吴翠琴. 基于模糊PID的足球机器人运动控制研究[J]. 工程设计学报, 2006, 13(4): 224-227.
[9] 王文林. 新型汽车起动机综合测试设备的研制[J]. 工程设计学报, 2003, 10(4): 183-187.
[10] 陈亚良, 傅龙珠, 梅德庆, 陈子辰. 超精密装置PID振动控制系统的仿真研究[J]. 工程设计学报, 2003, 10(1): 15-19.
[11] 姜伟, 胡新华. 伺服螺旋机构建模与参数优化设计[J]. 工程设计学报, 2002, 9(3): 155-158.