Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2364-2375    DOI: 10.3785/j.issn.1008-973X.2024.11.018
    
Influence of water immersion on dynamic characteristics of heavy-haul railway reinforced subgrade
Lihua LI1,2(),Shuguang JIANG1,2,Lifang MEI1,2,*(),Yiming LIU1,2
1. School of Civil Engineering, Architecture and the Environment, Hubei University of Technology, Wuhan 430068 , China
2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Wuhan 430068, China
Download: HTML     PDF(1814KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic load effect of different axle heavy train was simulated by indoor model experiment in order to solve the problem that the roadbed performance of heavy haul railway decreased after wetting, which affected the safety of train running. The dynamic characteristics and long-term stability of reinforced roadbed of heavy haul railway before and after soaking were analyzed. Results show that the stress, settlement and acceleration of the plain soil roadbed increase significantly after soaking. The maximum stress and the settlement of sleeper decrease by 21% and 20% respectively, the maximum stress of composite reinforced roadbed decreases by 23% , and the settlement of sleeper decreases by 30%. The reinforcement can improve the strength of subgrade, make the superstructure of subgrade more stable and reduce the acceleration of subgrade. The stress attenuation coefficient of each layer of roadbed increases after soaking, and the reinforcement makes the stress attenuation coefficient and the stress vertical diffusion depth decrease. The reinforcement can reduce the peak value of pore water pressure and increase the dissipation rate of pore water pressure. Geotextile can keep the properties of ballast layer and reduce the fouling of ballast layer after soaking.



Key wordswater immersion      heavy-loaded railway      reinforced subgrade      stress      acceleration      settlement      pore water pressure     
Received: 14 September 2023      Published: 23 October 2024
CLC:  TU 239  
Fund:  国家自然科学基金资助项目(52278347);湖北省基金创新群体资助项目(2024AFA009);湖北省高等学校优秀中青年科技创新团队资助项目(T2023006);湖北工业大学杰出人才基金资助项目(XJ2021000501).
Corresponding Authors: Lifang MEI     E-mail: researchmailbox@163.com;meilfhg@163.com
Cite this article:

Lihua LI,Shuguang JIANG,Lifang MEI,Yiming LIU. Influence of water immersion on dynamic characteristics of heavy-haul railway reinforced subgrade. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2364-2375.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2364


浸水对重载铁路加筋路基动力特性的影响

为了解决重载铁路路基湿化后路基性能下降,影响列车行车安全的问题,通过室内模型实验模拟不同轴重列车动载作用,研究浸水前、后重载铁路加筋路基的动力特性及长期稳定性. 结果表明,浸水后素土路基的应力、沉降、加速度会显著增大;浸水后与素土路基相比,格室加筋后路基最大应力下降21%,轨枕沉降下降20%,复合加筋路基的最大应力下降23%,轨枕沉降下降30%,复合加筋效能优于格室加筋. 加筋可以提高路基强度,使路基的上部结构更稳定,降低路基加速度. 浸水后路基各层的应力衰减系数增大,加筋使应力衰减系数和应力竖向扩散深度减小. 加筋可以降低路基孔隙水压力峰值,提高孔隙水压力的消散速度. 浸水后土工布可以保持道砟层性能,减轻道砟污化.


关键词: 浸水,  重载铁路,  加筋路基,  应力,  加速度,  沉降,  孔隙水压力 
Fig.1 Test system of traffic load model
加筋材料成分A/(g·m?2D/mm$ {F}_{1} $/kNL/%
无纺土工织物聚丙烯500±201≥3.230~100
Tab.1 Parameter of geotextile engineering
Fig.2 Ballast grading curve
Fig.3 Model and sensor arrangement position
Fig.4 Laying location of reinforced material
T/tv/(km·h?1)$ {F}_{2} $/kN$ {F}_{3} $/kNf/Hz
23807152[17]
25801020
27801225
30801530
Tab.2 Summary of loading parameter
组别加载载重/t是否加筋是否浸水v/(km·h?1)
U依次施加23、25、27、30 t,每级5万次80
U-G土工格室80
U-G-T土工格室+土工布80
S80
S-G土工格室80
S-G-T土工格室+土工布80
Tab.3 Train load test program
数据来源σ1/kPa
T = 23 tT = 25 tT = 27 tT = 30 t
本文缩尺模型50.855.965.584.5
Boussinesq理论解[20]73.982.7(28t)88.6
大秦线大同-阳原段[21]52.2
大秦线朔黄线[22]42.4
Tab.4 Comparison of peak stress of subgrade
Fig.5 Transverse distribution of dispatching stress in subgrade under different axle weight
Fig.6 Transverse distribution of subgrade settlement under different axle load
Fig.7 Lateral distribution of peak acceleration at each position in subgrade under different axle weight
Fig.8 Peak variation of each data under different axis weight
Fig.9 Longitudinal distribution of each subgrade stress under different axle weight
Fig.10 Dynamic stress attenuation coefficient of each subgrade under different axle weight
Fig.11 Change curve of subgrade settlement with loading times
Fig.12 Contrast between before and after laying geotextile in subgrade after soaking
Fig.13 Curve of pore water pressure with loading times
[1]   翟婉明 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14 (3): 10- 21
ZHAI Wanming A unified model of the vehicle-track vertical system and its coupling dynamics principle[J]. Journal of the China Railway Society, 1992, 14 (3): 10- 21
doi: 10.3321/j.issn:1001-8360.1992.03.002
[2]   薛富春, 聂如松 高速列车荷载作用下无砟轨道-路基-地基精细化有限元模型与验证[J]. 铁道科学与工程学报, 2023, 20 (6): 1951- 1962
XUE Fuchun, NIE Rusong Elaborate finite element model and validation for ballastless track-subgrade-foundation under high-speed train loads[J]. Journal of Railway Science and Engineering, 2023, 20 (6): 1951- 1962
[3]   ZHU Z Y, LING X Z, CHEN S J, et al Analysis of dynamic compressive stress induced by passing trains in permafrost subgrade along Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2011, 65 (3): 465- 473
doi: 10.1016/j.coldregions.2010.10.011
[4]   石熊 高速铁路路基动力累积变形模型试验研究[J]. 铁道科学与工程学报, 2020, 17 (6): 1346- 1355
SHI Xiong Experimental study on the dynamic accumulation deformation model of high-speed railway subgrade[J]. Journal of Railway Science and Engineering, 2020, 17 (6): 1346- 1355
[5]   娄霜 模拟路基动力响应的原位激振试验研究[J]. 岩石力学与工程学报, 2020, 39 (3): 629- 636
LOU Shuang In situ excitation test of simulated subgrade dynamic response[J]. Chinese Journal of Rock mechanics and Engineering, 2020, 39 (3): 629- 636
[6]   张严, 刘德仁, 王旭, 等 中兰铁路深厚黄土场地浸水地表变形规律研究[J]. 铁道科学与工程学报, 2022, 19 (9): 2461- 2469
ZHANG Yan, LIU Deren, WANG Xu, et al Study on deformation law of submerged surface in deep loess site of Zhongwei-Lanzhou Railway[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2461- 2469
[7]   王亮亮, 杨果林, 房以河, 等 高速铁路膨胀土路堑全封闭基床动力特性现场试验[J]. 岩土工程学报, 2014, 36 (4): 640- 645
WANG Liangliang, YANG Guolin, FANG Yihe, et al In-situ tests on dynamic character of fully-enclosed cutting subgrade of high-speed railways in expansive soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 640- 645
doi: 10.11779/CJGE201404007
[8]   商拥辉, 徐林荣, 蔡雨, 等 重载铁路循环动载下水泥改良膨胀土路基动力特性[J]. 中国铁道科学, 2019, 40 (6): 19- 29
SHANG Yonghui, XU Linrong, CAI Yu, et al Dynamic characteristics of cement improved expansion soil subgrade under the cyclic dynamic load of heavy-load railway[J]. China Railway Science, 2019, 40 (6): 19- 29
[9]   SWETA K, HUSSAINI S K K Effect of geogrid on deformation response and resilient modulus of railroad ballast under cyclic loading[J]. Construction and Building Materials, 2020, 26 (4): 501- 514
[10]   CHAWLA S, SHAHU J T, KUMAR S Analysis of cyclic deformation and post-cyclic strength of reinforced railway tracks on soft subgrade[J]. Transportation Geotechnics, 2021, 28 (3): 1212- 1224
[11]   李丽华, 李俊鹏, 陈智, 等 加筋建筑垃圾土地基模型试验[J]. 中国科技论文, 2021, 16 (2): 158- 163
LI Lihua, LI Junpeng, CHEN Zhi, et al Land base model experiment of reinforced construction waste[J]. China Science Paper, 2021, 16 (2): 158- 163
doi: 10.3969/j.issn.2095-2783.2021.02.006
[12]   李丽华, 曹毓, 刘巨强, 等 不同加筋方式下碎石桩复合地基承载性能试验研究[J]. 岩石力学与工程学报, 2023, 42 (12): 3085- 3094
LI Lihua, CAO Yu, LIU Juqiang, et al Experimental study on load bearing performance of stone columns under different reinforcement methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (12): 3085- 3094
[13]   国家铁路局. 铁路路基设计规范: TB10001-2016 [S]. 北京: 中国铁道出版社, 2015.
[14]   李丽华, 康浩然, 张鑫, 等. 加筋土石混合体动力特性[EB/OL]. (2023-06-13)[2023-09-14]. https://doi.org/10.13229/j.cnki.jdxbgxb.20221604.
[15]   SOWMIYA L S, SHAHU J T, GUPTA K K Stresses and displacements in rein-forced tracks[J]. Ground Improvement, 2013, 167 (1): 47- 59
[16]   国家铁路局. 重载铁路设计规范: TB10625-2017[S]. 北京: 中国铁道出版社, 2017.
[17]   冷伍明, 梅慧浩, 聂如松, 等 重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 37 (4): 1- 6
LENG Wuming, MEI Huihao, NIE Rusong, et al Experimental study on the foot ruler model of heavy-haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 37 (4): 1- 6
[18]   ISHIKAWA T, SEKINE E, MIURA S Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48 (5): 691- 703
doi: 10.1139/t10-099
[19]   HASNAYN M M, MCCARTER W J, WOODWARD P K, et al Railway subgrade performance after repeated flooding: large-scale laboratory testing[J]. Transportation Geotechnics, 2020, 23 (3): 1001- 1014
[20]   朔黄铁路发展有限责任公司. 重载铁路运行条件下路基快速加固指南[M]. 北京: 中国铁道出版社, 2015.
[21]   赵欣. 大秦线重载铁路路基质量评估理论与方法的研究[D]. 北京: 北京交通大学, 2011.
ZHAO Xin. Research on the theory and method of quality assessment of heavy-haul railway subgrade in Daqin Line [D]. Beijing: Beijing Jiaotong University, 2011.
[22]   薛继连. 重载铁路路基状态检测与强化技术[M]. 北京: 科学出版社, 2014.
[23]   BIAN X C, JIANG H G, CHEN Y M Accumulative deformation in railway track induced by high-speed traffic loading of the trains[J]. Earthquake Engineering and Engineering Vibration, 2010, 9 (3): 319- 326
doi: 10.1007/s11803-010-0016-2
[24]   COELHO B Z, HICKS M A Numerical analysis of railway transition zones in soft soil[J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2016, 230 (6): 1601- 1613
[25]   ZHANG C L, JIANG G L, BUZZI O, et al Full-scale model testing on the dynamic behaviour of weathered red muds-tone subgrade under railway cyclic loading[J]. Soils and Foundations, 2019, 52 (2): 296- 315
[26]   段君义, 杨果林, 刘洋, 等 浸水对无砟轨道膨胀土路基力学行为与变形特征的影响[J]. 铁道学报, 2022, 44 (4): 19- 26
DUAN Junyi, YANG Guolin, LOU Yang, et al Effect of water immersion on mechanical behavior and deformation characteristics of ballastless track expansion soil[J]. Journal of the China Railway Society, 2022, 44 (4): 19- 26
doi: 10.3969/j.issn.1001-8360.2022.04.003
[27]   ARIVALAGAN J, RUJIKIATKAMJORN C, INDRARATNA B, et al The role of geosynthetics in reducing the fluidisation potential of soft subgrade under cyclic loading[J]. Geotextiles and Geomembranes, 2021, 49 (5): 1324- 1338
doi: 10.1016/j.geotexmem.2021.05.004
[28]   KONG X H, JIANG G L, LI A H, et al Analysis of dynamic characteristics of railway subgrade based on three-dimensional numerical simulation[J]. Journal of Southwest Jiaotong University, 2014, 49 (3): 406- 411
[29]   ZHANG Chonglei, JIANG Guanlu Full-scale model testing of the dynamic response of lime-stabilized weathered red mudstone subgrade under railway excitation[J]. Soil Dynamics and Earthquake Engineering, 2019, 130 (7): 1220- 1233
[30]   冷伍明, 李亚峰, 聂如松, 等 高速铁路无砟轨道路基翻浆模型试验[J]. 哈尔滨工业大学学报, 2021, 53 (3): 18- 26
LENG Wuming, LI Yafeng, NIE Rusong, et al Model test of subgrade mud-pumping of ballastless track for high speed railway[J]. Journal of Harbin Institute of Technology, 2021, 53 (3): 18- 26
doi: 10.11918/202001060
[1] Yan YAO,Hongwei YING,Kuihua WANG,Chengwei ZHU,Changju ZHANG,Binghe LI. Surface settlement induced by tunneling near existing river channel[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1886-1891.
[2] Renzhu PENG,Suzhen LI. Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1681-1690.
[3] Zhuojie CHEN,Jiajin ZHOU,Weile CHEN,Jian LIU,Xiaonan GONG. Calculation and analysis of settlement of deep cement mixing pile composite foundation for Shenzhen-Zhongshan Link immersed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1397-1406.
[4] Peiyun ZHU,Xiaozhang LI,Mingming YU,Xu XIE. Effect of shear lag on stress at CFRP plate-steel beam reinforcement interface[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1020-1028.
[5] Jiahao CHEN,Junchao LI,Bin ZHU,Qiang LU,Yubing WANG,Longhua GUAN,Fengkui ZHAO. Model test on influence of initial stress on blast wave propagation in dry sand foundation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 579-588.
[6] Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.
[7] Can CUI,Xiao-hu YANG,Wei-wei QIU,Fang-lei HUANG. GPU-based acceleration technology for signature verification of blockchain transactions[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1505-1515.
[8] Si-zhen YU,Tian-qi QI,Qiao WANG,Yong-gang CHENG,Wei ZHOU,Xiao-lin CHANG. Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1585-1596.
[9] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.
[10] Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.
[11] Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.
[12] Si-ning ZHAN,Dong-dong YUAN,Yong-gang LIN,Yi-ping ZHANG,Yong-chao ZHOU,Tu-qiao ZHANG. Quantitative study on incipient motion of organic sediments with bio-adhesive effect[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2126-2132.
[13] Tian-hao ZHAO,Jian-jing ZHENG,Jing-hua LING,Chang-yu SHI,Dao-sheng LING. Buoyancy and motion of objects in fluid in centrifugal hypergravity environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 81-91.
[14] Shan-shan WANG,Ming GAO,Jian-jiang SHI. Current stress optimization of dual Buck-Boost integrated DAB three-port DC-DC converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1425-1435, 1472.
[15] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.