Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1425-1435, 1472    DOI: 10.3785/j.issn.1008-973X.2022.07.018
    
Current stress optimization of dual Buck-Boost integrated DAB three-port DC-DC converter
Shan-shan WANG(),Ming GAO,Jian-jiang SHI*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(4185KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A corresponding control method was proposed aiming at the optimization of the current stress of the high-frequency chain of the three-port DC-DC converter which integrated dual Buck-Boost and dual-active-bridge. Duty ratio control was adopted on the primary side of the high-frequency transformer, and phase shift control was adopted between the primary side and the secondary side in order to realize the adjustment of voltage and power of each port. The internal phase shift angle between the secondary side bridge arms could be used as the third control object to achieve the optimal control. The phase shift control on the secondary side was introduced based on the traditional control method in order to achieve the effect of optimizing the current stress of the high-frequency link. The mathematical model of the current stress optimization problem in each mode of the three-port DC-DC converter was established, and the realization conditions of the current stress optimization were given. A 500 W experimental prototype was constructed to verify the proposed optimal control method of current stress. The experimental results show that the method can effectively reduce the current stress of the high-frequency link and improve the system efficiency. The method has a more obvious effect when the output port is lightly loaded.



Key wordsthree-port DC-DC converter      dual-active-bridge      phase shift control      internal phase shift control      current stress optimization     
Received: 19 July 2021      Published: 26 July 2022
CLC:  TM 46  
Fund:  国家自然科学基金资助项目 ( 52077199 )
Corresponding Authors: Jian-jiang SHI     E-mail: 11710055@zju.edu.cn;jianjiang@zju.edu.cn
Cite this article:

Shan-shan WANG,Ming GAO,Jian-jiang SHI. Current stress optimization of dual Buck-Boost integrated DAB three-port DC-DC converter. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1425-1435, 1472.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.018     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1425


双Buck-Boost集成DAB型三端口直流变换器电流应力优化

针对双Buck-Boost集成双有源桥型三端口直流变换器高频链的电流应力优化问题,提出相应的控制方法. 为了实现对各个端口电压与功率的调节,高频变压器原边采用占空比控制,原、副边之间采用移相控制. 副边2个桥臂之间的内移相角可以作为第3个控制量,以实现优化控制目标;提出在传统控制方法的基础上引入副边桥臂间的内移相控制,实现优化高频链电流应力的效果. 建立三端口直流变换器高频链各模式下电流应力优化问题的数学模型,给出电流应力优化的实现条件. 搭建500 W的实验样机,对所提的电流应力优化控制方法进行实验验证. 结果表明,利用该方法可以有效地降低高频链的电流应力,提升系统效率,负载端口轻载时的效果更加明显.


关键词: 三端口DC-DC变换器,  双有源桥,  移相控制,  内移相控制,  电流应力优化 
Fig.1 Topology of TPC
Fig.2 Control method of TPC
Fig.3 Switching states
Fig.4 Working range of each mode
Fig.5 Voltage waveforms of high-frequency transformer on primary and secondary sides
Fig.6 Main waveforms of mode 4
Fig.7 Ranges of transmission power for different modes
Fig.8 Running area partition
Fig.9 Current stress before optimization when k = 0.6
Fig.10 Current stress after optimization when k = 0.6
Fig.11 Current stress before optimization when k = 1.2
Fig.12 Current stress after optimization when k = 1.2
Fig.13 Current stress optimization control block diagram
Fig.14 Flow chart of current stress optimization control
实验
编号
k iS1RMS/A iS2RMS/A iS5RMS/A iLRMS/A
优化
优化
优化
优化
优化
优化
优化
优化
1 0.6 12.4 12.0 12.4 12.0 4.2 4.0 17.6 17.2
2 0.6 12.2 10.9 8.7 8.3 3.6 3.2 15.1 13.5
3 0.6 11.7 8.8 5.4 5.1 3.1 2.4 13.0 10.5
4 1.1 6.5 5.5 4.5 4.4 1.9 1.2 7.9 7.0
5 1.1 5.2 3.9 3.1 2.9 1.5 1.1 6.0 4.7
Tab.1 Comparison of parameters before and after current stress optimization
实验编号 k Pon/W Pswitch/W Ploss/W
优化前 优化后 优化前 优化后 优化前 优化后
1 0.6 28.2 27.2 4.5 2.5 32.7 29.7
2 0.6 20.5 17.5 4.4 3.0 24.9 20.5
3 0.6 15.3 9.9 4.1 2.5 19.4 12.4
4 1.1 5.6 4.5 2.8 2.4 8.4 6.9
5 1.1 3.3 2.1 2.4 1.7 5.7 3.8
Tab.2 Comparison of power loss of switches (S1-S8 ) before and after current stress optimization
Fig.15 Misjudgment area under error parameter
Fig.16 Control precision when ke = 1.1
Fig.17 Experimental platform of TPC
Fig.18 Comparison waveforms before and after optimization in first operating area when k = 0.6
Fig.19 Comparison waveforms before and after optimization in second operating area when k = 0.6
Fig.20 Comparison waveforms before and after optimization in third operating area when k= 0.6
Fig.21 Comparison waveforms before and after optimization in second operating area when k= 1.1
Fig.22 Comparison waveform before and after optimization in third operating area when k = 1.1
Fig.23 Experimental waveforms of online switching between different working areas under k = 0.6
Fig.24 Experimental waveforms of online switching between different working areas under k = 1.1
Fig.25 Curve of TPC output power-efficiency
[1]   WANG Z, LI H An integrated three-port bidirectional DC-DC converter for PV application on a DC distribution system[J]. IEEE Transactions on Power Electronics, 2013, 28 (10): 4612- 4624
doi: 10.1109/TPEL.2012.2236580
[2]   WU H, XU P, HU H, et al Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems[J]. IEEE Transactions on Industrial Electronics, 2014, 6 (2): 856- 869
[3]   孙孝峰, 刘飞龙, 熊亮亮, 等 双Buck/Boost 集成双有源桥三端口DC-DC变换器[J]. 电工技术学报, 2016, 31 (22): 73- 82
SUN Xiao-feng, LIU Fei-long, XIONG Liang-liang, et al Double Buck/Boost integrated dual active bridge three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (22): 73- 82
doi: 10.3969/j.issn.1000-6753.2016.22.010
[4]   孙孝峰, 申彦峰, 李午英, 等 交错并联双向Buck/ Boost集成LLC谐振型三端口直流变换器[J]. 电工技术学报, 2016, 31 (14): 165- 175
SUN Xiao-feng, SHEN Yan-feng, LI Wu-ying, et al Interleaved bidirectional Buck/Boost integrated LLC resonant three port DC/DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (14): 165- 175
doi: 10.3969/j.issn.1000-6753.2016.14.019
[5]   张君君, 吴红飞, 葛红娟, 等 一种基于三端口变换器的航天器分布式供电系统[J]. 中国电机工程学报, 2015, 35 (24): 6459- 6466
ZHANG Jun-jun, WU Hong-fei, GE Hong-juan, et al A distributed power system with modular three-port converters for spacecraft[J]. Proceedings of the CSEE, 2015, 35 (24): 6459- 6466
[6]   吴红飞, 邢岩, 胡海兵, 等 副边调整式三端口半桥 DC-DC变换器[J]. 中国电机工程学报, 2011, 31 (30): 1- 6
WU Hong-fei, XING Yan, HU Hai-bing, et al Three-port half-bridge DC-DC converters with post regulation scheme[J]. Proceedings of the CSEE, 2011, 31 (30): 1- 6
[7]   张君君, 吴红飞, 曹锋, 等 半桥式三端口变换器建模与解耦控制[J]. 中国电机工程学报, 2015, 35 (3): 671- 678
ZHANG Jun-jun, WU Hong-fei, CAO Feng, et al Modeling and decoupling control of three-port half-bridge converters[J]. Proceedings of the CSEE, 2015, 35 (3): 671- 678
[8]   王荣闯, 王杉杉, 高明, 等 基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1585- 1593
WANG Rong-chuang, WANG Shan-shan, GAO Ming, et al Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1585- 1593
[9]   WANG P, REN P, LU X, et al A distributed state-of-charge balancing control scheme for three-port output-series converters in DC hybrid energy storage systems[J]. IEEE Access, 2019, 7: 157173- 157184
[10]   WANG L, WANG H, LIU Y, et al. A fully ZVS dual-active-bridge based three-port converter with high integration [C]// 2021 IEEE Applied Power Electronics Conference and Exposition. Phoenix: IEEE, 2021: 1410-1415.
[11]   WANG J, TAN W, HE D, et al. Three ports bidirectional DC converters of the interleaved Buck/Boost integrated with dual active bridge [C]// 2021 IEEE 4th International Electrical and Energy Conference. Wuhan: IEEE, 2021: 1-6.
[12]   LU Y, SUN K, WU H, et al A three-port converter based distributed DC grid connected PV system with autonomous output voltage sharing control[J]. IEEE Transactions on Power Electronics, 2019, 34 (1): 325- 339
doi: 10.1109/TPEL.2018.2822726
[13]   ZHAO B, SONG Q, LIU W, et al Current stress optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (10): 4458- 4467
doi: 10.1109/TIE.2012.2210374
[14]   曾进辉, 孙志峰, 雷敏, 等 双重移相控制的双主动全桥变换器全局电流应力分析及优化控制策略[J]. 电工技术学报, 2019, 34 (12): 2507- 2518
ZENG Jin-hui, SUN Zhi-feng, LEI Min, et al Global current stress analysis and optimal control strategy of DAB converter based on dual-phase-shift control[J]. Transactions of China Electrotechnical Society, 2019, 34 (12): 2507- 2518
[15]   安峰, 宋文胜, 杨柯欣 基于扩展相移的双有源全桥DC-DC变换器多目标优化控制方法[J]. 中国电机工程学报, 2019, 39 (3): 822- 831
AN Feng, SONG Wen-sheng, YANG Ke-xin Multi-objective optimization control scheme based on extended phase-shift of dual-active-bridge DC-DC converters[J]. Proceedings of the CSEE, 2019, 39 (3): 822- 831
[16]   HUANG J, WANG Y, LI Z, et al Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4169- 4179
doi: 10.1109/TIE.2016.2543182
[17]   安峰, 杨柯欣, 王嵩, 等 基于模型前馈的双有源全桥DC-DC变换器电流应力优化方法[J]. 电工技术学报, 2019, 34 (14): 2946- 2956
AN Feng, YANG Ke-xin, WANG Song, et al Current stress optimized scheme with model-based feedforward for dual-active-bridge DC-DC converters[J]. Transactions of China Electrotechnical Society, 2019, 34 (14): 2946- 2956
[18]   胡燕, 张宇, 张天晖, 等 考虑不同软开关模式的双有源桥变换器电流应力优化方法[J]. 电力系统自动化, 2019, 43 (23): 58- 64
HU Yan, ZHANG Yu, ZHANG Tian-hui, et al Optimization method of current stress for dual active bridge converter considering different soft switching modes[J]. Automation of Electric Power Systems, 2019, 43 (23): 58- 64
doi: 10.7500/AEPS20190429004
[19]   涂春鸣, 余雪萍, 肖凡, 等 TAB变换器高频链交流电流峰值与有效值统一求解模型[J]. 中国电机工程学报, 2021, 41 (22): 7740- 7751
TU Chun-ming, YU Xue-ping, XIAO Fan, et al A novel solution for high-frequency-link AC current of TAB converter[J]. Proceedings of the CSEE, 2021, 41 (22): 7740- 7751
[1] Rong-chuang WANG,Shan-shan WANG,Ming GAO,Jian-jiang SHI. Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1585-1593.
[2] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.