Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 683-691    DOI: 10.3785/j.issn.1008-973X.2022.04.007
    
Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series
Wei-hang CHEN1(),Qiang LUO1,2,Teng-fei WANG1,2,*(),Liang-wei JIANG1,2,Liang ZHANG1,2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. MOE Key Laboratory of High-Speed Railway Engineering, Chengdu 610031, China
Download: HTML     PDF(1784KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A bi-directional long short-term memory (Bi-LSTM)-based technique was proposed for subgrade settlement prediction in order to achieve early and accurate prediction of post-construction settlement of subgrade. The observational data was transformed into equally spaced observations using interpolation, namely the Akima method, for time series analysis. Six contributing factors were extracted from the ‘fill height-time-foundation settlement’ curves, and were used as input variables for training a Bi-LSTM model. Settlement predictions can be sequentially updated by combining with the rolling forecast technique. Results show that deep learning can efficiently use subgrade construction information, increase the sample size, and improve the reliability of early prediction. The Bi-LSTM model achieves bidirectional feature extraction on observational data and makes more accurate predictions in the same sample size conditions. The information during construction and 3-month post-construction period was used based on observations of six subsoil foundations of medium compressibility and one composite foundation. Predicted results with mean values of root mean square error (RMSE) and mean absolute percentage error (MAPE) were 1.19 mm and 1.04%, respectively.



Key wordsbi-directional long short-term memory (Bi-LSTM)      post-construction settlement for subgrade      unevenly spaced time series      rolling forecast      construction information     
Received: 22 May 2021      Published: 24 April 2022
CLC:  TU 433  
Fund:  国家自然科学基金资助项目(52078435, 41901073);四川省科技计划资助项目(2021YJ0001)
Corresponding Authors: Teng-fei WANG     E-mail: chenweihang@my.swjtu.edu.cn;w@swjtu.edu.cn
Cite this article:

Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.007     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/683


基于Bi-LSTM的非等时距路基工后沉降滚动预测

为了实现路基工后沉降的早期、精准预测,提出基于双向长短期记忆网络(Bi-LSTM)的路基沉降预测技术. 采用Akima法将观测数据内插为适应时序分析法的等时距序列,提取“填土高度-时间-地基沉降”曲线中的6个影响因素作为变量训练Bi-LSTM模型,结合滚动迭代方法实现沉降预测的后延更新. 研究表明,利用深度学习技术可以有效地利用路基施工期信息,增加训练样本量,提升沉降早期预测的可靠性. Bi-LSTM模型对观测信息进行双向特征提取,同等样本量下的预测效果更精确. 依托6个中等压缩性土地基和1个复合地基监测断面信息,仅利用路堤填筑期及工后3个月数据,沉降预测的均方根误差 (RMSE) 和平均绝对百分误差 (MAPE) 平均值可以控制为1.19 mm、1.04%.


关键词: 双向长短期记忆网络(Bi-LSTM),  路基工后沉降,  非等时距序列,  滚动预测,  施工填筑信息 
Fig.1 Schematic of neural network structure
Fig.2 Forecasting method for post-construction settlement
Fig.3 Relationship between fill height, time and ground settlement
Fig.4 Bi-LSTM network structures of settlement
Fig.5 Profiles of subgrades in test sections
Fig.6 Observational data correction and transformation for equally spaced observations
断面 $v{'_{t - 3}} $ vt Ht St?3 St?6 St?9
DK1806+925 0.59 0.96 0.58 0.99 0.99 0.98
DK1806+900 0.60 0.91 0.60 0.99 0.99 0.98
DK1806+800 0.85 0.95 0.85 0.99 0.99 0.98
DK1806+775 0.76 0.87 0.77 1.00 0.99 0.99
DK1807+250 0.57 0.95 0.58 0.99 0.98 0.98
DK1807+150 0.55 0.95 0.55 0.99 0.98 0.98
Tab.1 Grey correlation degree distribution in test sections
Fig.7 Training process of Bi-LSTM
Fig.8 Comparision between observed and predicted values of foundation settlement
Fig.9 Predicted values derived from modified BP neural network model and hyperbolic function model
Fig.10 Bi-LSTM based prediction with different training samples
Fig.11 Absolute errors of Bi-LSTM model with different training samples
Fig.12 Bi-LSTM based predictions for foundation settlements in remaining test sections
[1]   TAN S A Hyperbolic method for settlements in clays with vertical drains[J]. Canadian Geotechnical Journal, 1994, 31 (31): 125- 131
[2]   ASAOKA A Observational procedure of settlement prediction[J]. Soils and Foundations, 1978, 18 (4): 30- 34
[3]   冷伍明, 杨奇, 聂如松, 等 高速铁路桥梁桩基工后沉降组合预测研究[J]. 岩土力学, 2011, 32 (11): 3341- 3348
LENG Wu-ming, YANG Qi, NIE Ru-song, et al Study of post-construction settlement combination forecast method of high-speed railway bridge pile foundation[J]. Rock and Soil Mechanics, 2011, 32 (11): 3341- 3348
doi: 10.3969/j.issn.1000-7598.2011.11.023
[4]   BATES J M, GRANGER C W J The combination of forecasts[J]. Operational Research Quarterly, 1969, 20 (4): 451- 468
doi: 10.1057/jors.1969.103
[5]   曹文贵, 谭涛 考虑数据异常及新旧程度影响有界性的地基沉降预测方法[J]. 湖南大学学报:自然科学版, 2020, 47 (3): 37- 43
CAO Wen-gui, TAN Tao A prediction method of foundation settlement considering anomaly and newness-oldness degree influence boundedness of measured data[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (3): 37- 43
[6]   ZHANG P, WU H N, CHEN R P, et al Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: a comparative study[J]. Tunnelling and Underground Space Technology, 2020, 99 (6): 103383
[7]   HUANG C F, LI Q, WU S C, et al Application of the Richards model for settlement prediction based on a bidirectional difference-weighted least-squares method[J]. Arabian Journal for Science and Engineering, 2018, 43 (10): 5057- 5065
doi: 10.1007/s13369-017-2909-0
[8]   LV Y, LIU T T, WEI S D, et al Study on settlement prediction model of deep foundation pit in sand and pebble strata based on grey theory and BP neural network[J]. Arabian Journal of Geosciences, 2020, 13 (23): 1238
doi: 10.1007/s12517-020-06232-7
[9]   PARK H I, KIM K S, KIM H Y Field performance of a genetic algorithm in the settlement prediction of a thick soft clay deposit in the southern part of the Korean peninsula[J]. Engineering Geology, 2015, 196 (1): 150- 157
[10]   刘文豪, 黎曦, 胡伍生 基于神经网络和双曲线混合模型的高速公路沉降预测[J]. 东南大学学报:自然科学版, 2013, 43 (Supple.2): 380- 383
LIU Wen-hao, LI Xi, HU Wu-sheng Highway subsidence prediction based on neural network and hyperbolic hybrid model[J]. Journal of Southeast University: Natural Science Edition, 2013, 43 (Supple.2): 380- 383
[11]   ZHANG P, YANG Y, YIN Z Y BiLSTM-based soil–structure interface modeling[J]. International Journal of Geomechanics, 2021, 21 (7): 1- 9
[12]   YANG B B, YIN K L, LACASSE S, et al Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16 (1): 677- 694
[13]   周小雄, 龚秋明, 殷丽君, 等 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (Supple.2): 3505- 3515
ZHOU Xiao-xiong, GONG Qiu-ming, YIN Li-jun, et al Predicting boring parameters of TBM stable stage based on BLSTM networks combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Supple.2): 3505- 3515
[14]   李洛宾, 龚晓南, 甘晓露, 等 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 51 (Supple.1): 13- 19
LI Luo-bin, GONG Xiao-nan, GAN Xiao-lu, et al Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 51 (Supple.1): 13- 19
[15]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[16]   YIN J, DENG Z, INES A V M, et al Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)[J]. Agricultural Water Management, 2020, 242: 106386
doi: 10.1016/j.agwat.2020.106386
[17]   AKIMA H A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of Association for Computing Machinery, 1970, 17 (4): 589- 602
doi: 10.1145/321607.321609
[18]   WANG Z Z, XIAO C L, GOH S H, et al Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (3): 04021003
doi: 10.1061/(ASCE)GT.1943-5606.0002486
[19]   罗强, 魏永幸. 高速铁路路基[M]. 北京: 中国铁道出版社有限公司, 2021: 192–199.
[1] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[2] TAN Qing, ZHANG Yi-chao, XIA Yi-min, GAO Hao. Experimental research of TBM disc cutter penetrate saturated rock[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 914-921.
[3] LI Fei, ZHU Hong hu, ZHANG Cheng cheng, SHI Bin. Experimental study on feasibility of fiber Bragg grating-based foundation deformation monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 204-211.
[4] HU Ye-Shuang, CHEN Shui-Long, MA Lei. Cutoff effect of groundwater seepage due to existence of underground
structure
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1902-1906.
[5] SU Mo-Xin, XIE Kang-He. Computation of one-dimensional consolidation of unsaturated soil with linear soil-water characteristic curve[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 150-155.