Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1690-1696    DOI: 10.3785/j.issn.1008-973X.2020.09.004
    
Experimental study on microbial reinforced calcareous sand using ring shear apparatus
Xuan-chen DING(),Yu-min CHEN*(),Xin-lei ZHANG
Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
Download: HTML     PDF(1138KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The calcareous sand reinforced in this experiment was obtained from an island in the South China Sea. The shear strength characteristics of microbially induced carbonate precipitation (MICP) cemented calcareous sand were studied using ring shear tests. The influences of bacterial concentration, immersion time of bacterial solution, cementation solution concentration, treated time, vertical stress and seawater environment were considered. Results show that MICP can effectively improve the shear strength of calcareous sand. When the cementation solution concentration was 0.5 mol/L, the shear strength of the treated samples reached the maximum values, which was about three times of that of the untreated samples, showing a remarkable strain softening phenomenon. Increasing the concentration of the bacteria solution, soaking time, concentration of the reinforcement solution and strengthening time can improve the reinforcement effect, reduce the ratio of residual strength to peak strength, and make the strain softening phenomenon more and more obvious. Although seawater has an inhibitory effect on the reinforcement process of MICP, the application of MICP in this environment can effectively improve the shear strength of calcareous sandy foundation.



Key wordsmicrobial reinforcement      calcareous sand      ring shear tests      shear strength      residual strength     
Received: 04 September 2019      Published: 22 September 2020
CLC:  TU 433  
Corresponding Authors: Yu-min CHEN     E-mail: dingxc2413@163.com;ymchenhhu@163.com
Cite this article:

Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.004     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1690


微生物加固钙质砂环剪试验研究

对取自南海岛礁的钙质砂进行固化处理,通过环剪试验研究微生物诱导碳酸钙沉积(MICP)胶结钙质砂的抗剪强度特性,并考虑菌液浓度、菌液浸泡时间、加固液浓度、加固时间、竖向应力以及海水环境等因素的影响. 结果表明:MICP方法可以有效提高钙质砂的抗剪强度. 当加固液浓度为0.5 mol/L时,加固后试样的抗剪强度达到最大值,约为未加固试样的3倍,并表现出显著的应变软化现象. 提高菌液浓度、菌液浸泡时间、加固液浓度、加固时间均可改善微生物加固效果,减小残余强度与峰值强度的比值,使试样的应变软化现象越来越明显. 海水环境虽对MICP加固过程有抑制作用,但在此环境下采用MICP方法仍能有效提升钙质砂地基的抗剪强度.


关键词: 微生物加固,  钙质砂,  环剪试验,  抗剪强度,  残余强度 
Fig.1 Calcareous sand grain gradation curve
试剂名称 ρ/(g·L?1) 试剂名称 ρ/(g·L?1)
酵母提取物 20 NiCl2·6H2O 0.024
氯化铵 10 蒸馏水 1000
MnCl2·H2O 0.012 ? ?
Tab.1 Microbial culture medium formulation
Fig.2 Calcareous sand sample after microbially induced carbonate precipitation (MICP) treatment
试样环境 σ/kPa OD600 tb / h c / (mol·L?1) t / d
淡水 50 0.380、0.474、0.542、0.633、0.759 2 0.4 3
0.474 1、3、4、5 0.4 3
0.474 2 0.50、0.60、0.75、1.00 3
0.474 2 0.4 4、5、6、7
25、75、100、125 0.474 2 0.4 7
海水 50 0.474 2 0.40、0.50、0.60、0.75、1.00 7
Tab.2 Conditions of sample reinforcement and ring shear test
Fig.3 Shear stress-shear displacement curve of treated calcareous sand samples under different influencing factors
Fig.4 Shear stress-shear displacement curves of treated calcareous sand samples under different vertical stress
Fig.5 Shear stress-shear displacement curves of treated calcareous sand samples in seawater environment
Fig.6 Comparison of peak strength and residual strength of treated calcareous sand samples under different influencing factors
Fig.7 Comparison of peak strength and residual strength of treated calcareous sand samples under different vertical stress conditions
[1]   陈海洋, 汪稔, 李建国, 等 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26 (9): 1389- 1392
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26 (9): 1389- 1392
doi: 10.3969/j.issn.1000-7598.2005.09.008
[2]   XIAO Y, LIU H L, XIAO P, et al Fractal crushing of carbonate sands under impact loading[J]. Geotechnique Letters, 2016, 6 (3): 1- 6
[3]   ALSHIBLI K A, DRUCKREY A M, AL-RAOUSH R I, et al Quantifying morphology of sands using 3D imaging[J]. Journal of Materials in Civil Engineering, 2014, 27 (10): 04014275
[4]   钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Progress in soil reinforcement by microbial grouting[J]. Geotechnical Mechanics, 2015, 36 (6): 1537- 1548
[5]   COOP M R, SORENSEN K K, FREITAS T B Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54 (3): 157- 163
doi: 10.1680/geot.2004.54.3.157
[6]   黄宏翔, 陈育民, 王建平, 等 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39 (6): 2082- 2088
HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping,. et al Circumferential shear test of shear strength characteristics of calcareous sand[J]. Geotechnical Mechanics, 2018, 39 (6): 2082- 2088
[7]   张家铭, 张凌, 蒋国盛, 等 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29 (10): 2789- 2793
ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29 (10): 2789- 2793
doi: 10.3969/j.issn.1000-7598.2008.10.037
[8]   张家铭, 张凌, 刘慧, 等 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报, 2008, 27 (Suppl.): 3010- 3015
ZHANG Jia-ming, ZHANG Ling, LIU Hui, et al Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (Suppl.): 3010- 3015
[9]   LEMOS L, SKEMPTON A W, VAUGHAN P R. Earthquake loading of shear surfaces in slopes [C] // Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE). San Francisco: ICSMFE, 1985: 1955 – 1962.
[10]   PAASSEN V, DAZA C M, STAAL M M, et al Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36 (2): 168- 175
doi: 10.1016/j.ecoleng.2009.03.026
[11]   LEON A, PAASSEN V. Ground improvement by microbially induced carbonate precipitation [D]. Netherlands: Delft University of Technology, 2009.
[12]   QABANY A A, SOGA K, SANTAMARINA C Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138 (8): 992- 1001
doi: 10.1061/(ASCE)GT.1943-5606.0000666
[13]   WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement [D]. Western Australia: Murdoch University, 2004.
[14]   KHAN M N H, AMARAKOON G G N N, SHIMAZAKI S, et al Coral sand solidification test based on microbially induced carbonate precipition using ureolytic bacteria[J]. Materials Transactions, 2015, 56 (10): 1725- 1732
doi: 10.2320/matertrans.M-M2015820
[15]   刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al MICP cemented calcareous sand dynamic characteristic test[J]. Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
[16]   方祥位, 李晶鑫, 李捷, 等 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39 (S1): 1- 8
FANG Xiang-wei, LI Jing-xin, LI Jie, et al Triaxial compression test and damage constitutive model of microbial solidified coral sand[J]. Geotechnical Mechanics, 2018, 39 (S1): 1- 8
[17]   赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学, 2014.
ZHAN Qian. Experimental study on microorganism induced calcium carbonate precipitation (MICP) solidified soil [D]. Beijing: China University of Geosciences, 2014.
[18]   OKWADHA G D O, LI J Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81 (9): 1143- 1148
doi: 10.1016/j.chemosphere.2010.09.066
[19]   李成杰, 魏桃员, 季斌, 等 不同钙源及Ca2+浓度对MICP的影响 [J]. 环境科学与技术, 2018, 41 (3): 30- 34
LI Cheng-jie, WEI Tao-yuan, JI bin, et al Effect of different calcium sources and Ca2+ concentration on micp [J]. Environmental Science and Technology, 2018, 41 (3): 30- 34
[20]   张昆, 郭菊彬 滑带土残余强度参数试验研究[J]. 铁道工程学报, 2007, (8): 13- 15
ZHANG Kun, GUO Ju-bin Experimental research on the residual strength parameters of slip soils[J]. Journal of Railway Engineering Society, 2007, (8): 13- 15
doi: 10.3969/j.issn.1006-2106.2007.08.004
[1] Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.
[2] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[3] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[4] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[5] WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1282-1287.
[6] ZHANG Cheng cheng, ZHU Hong hu, TANG Chao sheng, SHI Bin. Modeling of progressive interface failure of fiber reinforced soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1952-1959.
[7] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of  fresh municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1962-1967.
[8] ZHONG Shi-ying, LING Dao-sheng , WU Xiao-jun, CHEN Yun-min. Review on geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 777-784.
[9] SHAO Yu, ZHANG Cha-Jiao, SHU Ting-Chao. Failure prediction and reliability analysis of buried grey cast iron water mains considering corrosion[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 160-165.