Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1681-1690    DOI: 10.3785/j.issn.1008-973X.2024.08.015
    
Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model
Renzhu PENG1(),Suzhen LI1,2,*()
1. Department of Building Engineering, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Download: HTML     PDF(2373KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A corrosion depth prediction model based on the electrochemical corrosion mechanism was proposed in order to address the limitations of existing steel pipe corrosion depth prediction models, which do not consider the electrochemical corrosion mechanism and are difficult to generalize to different application scenarios. Dissolved oxygen mass concentration and water temperature monitoring data were used as inputs to predict the average corrosion depth of the pipe wall. A chemo-mechanical model was proposed combined with the corrosion depth prediction model, an empirical formula for corrosion depth-mechanical performance degradation and the Chaboche constitutive model in order to estimate the uniaxial stress-strain curve of the corroded pipe material. This uniaxial stress-strain curve can serve as a basis for the safety assessment of pipeline structures throughout their entire operational lifespan. A case study of an operational water supply steel pipe validated the rationality and feasibility of the model by using real-time monitoring data.



Key wordsmunicipal engineering      water steel pipeline      chemo-mechanical model      electrochemical corrosion      uniaxial stress-strain curve     
Received: 18 July 2023      Published: 23 July 2024
CLC:  TU 990  
Fund:  国家自然科学基金资助项目(52378525);土木工程防灾国家重点实验室自主课题研究基金资助项目(SLDRCE19-B-25).
Corresponding Authors: Suzhen LI     E-mail: 2111363@tongji.edu.cn;lszh@tongji.edu.cn
Cite this article:

Renzhu PENG,Suzhen LI. Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1681-1690.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.015     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1681


基于化力模型的供水钢管内腐蚀力学性能评估

为了解决已有钢管腐蚀深度预测模型未考虑电化学腐蚀机理,难以泛化到不同应用场景的问题,提出基于电化学腐蚀机理的腐蚀深度预测模型. 该模型以溶解氧质量浓度和水温监测数据作为输入,预测管壁平均腐蚀深度. 结合腐蚀深度预测模型、腐蚀深度-力学性能退化经验公式及Chaboche本构模型,提出化力模型,用于估算腐蚀后管材的单轴应力-应变曲线. 该单轴应力-应变曲线可以为全寿命运营周期内管道结构的安全评估提供依据. 以某根服役的供水钢管为案例,结合实时监测数据,验证了该模型的合理性和可行性.


关键词: 市政工程,  供水钢管,  化力模型,  电化学腐蚀,  单轴应力-应变曲线 
Fig.1 Overall scheme of proposed chemo-mechanical model
Fig.2 Three-stage schematic diagram of electrochemical corrosion in water supply pipeline
参数标定值
AO/ s?123.2713
Ea/(kJ?mol?1)23.5
DO/(m2?s?1)1.43×10?11
DOC/(m2?s?1)1.06×10?11
Tab.1 Parameter identification result of corrosion rate prediction model
Fig.3 Empirical law of steel mechanical property degradation due to corrosion obtained by researchers
Fig.4 Measured dissolved oxygen mass concentration and water temperature of field testing
Fig.5 Corrosion rate of steel and ductile pipe calculated by electrochemical corrosion rate prediction model
参数数值
wFe0.33
L/μm400
AO/ s?123.2713
Ea/( kJ?mol?1)23.5
DO/( m2?s?1)1.43×10?11
DOC/( m2?s?1)1.06×10?11
Tab.2 Parameter of proposed electrochemical corrosion rate prediction model
Fig.6 Measured pH value, velocity of flow and internal pressure of field testing
Fig.7 Corrosion rate calculated by existing empirical model
Fig.8 Variation of average corrosion depth with diffusion coefficient      
参数数值参数数值
fy0/ MPa235M2
E0/ MPa210 000C1/ MPa2 700
fu0/ MPa375C2/ MPa800
Q/ MPa200γ1200
b40γ250
Tab.3 Parameter of Chaboche constitutive model[26]
Fig.9 Time-varying uniaxial stress-strain curve of pipeline induced by internal corrosion
[1]   中华人民共和国住房和城乡建设部. 2022年城市建设统计年鉴 [EB/OL]. (2023-10-11)[2023-10-13]. https://www.mohurd.gov.cn/document/file.
[2]   CAI J, JIANG X, LODEWIJKS G Residual ultimate strength of offshore metallic pipelines with structural damage: a literature review[J]. Ships and Offshore Structures, 2017, 12 (8): 1037- 1055
doi: 10.1080/17445302.2017.1308214
[3]   WANG W, LI C-Q, SHI W Degradation of mechanical property of corroded water pipes after long service[J]. Urban Water Journal, 2019, 16 (7): 494- 504
doi: 10.1080/1573062X.2019.1687744
[4]   LI L, MAHMOODIAN M, LI C-Q, et al Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel[J]. Construction and Building Materials, 2018, 170: 78- 90
doi: 10.1016/j.conbuildmat.2018.03.023
[5]   KRYZHANIVSKYI E, NYKYFORCHYN H Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs[J]. Materials Science, 2011, 47 (2): 127- 136
doi: 10.1007/s11003-011-9390-9
[6]   YAVAS D, MISHRA P, ALSHEHRI A, et al Nanoindentation study of corrosion-induced grain boundary degradation in a pipeline steel[J]. Electrochemistry Communications, 2018, 88: 88- 92
doi: 10.1016/j.elecom.2018.02.001
[7]   GARBATOV Y, SOARES C G, PARUNOV J, et al Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85: 296- 303
doi: 10.1016/j.corsci.2014.04.031
[8]   VANAEI H, ESLAMI A, EGBEWANDE A A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 43- 54
doi: 10.1016/j.ijpvp.2016.11.007
[9]   MA H, ZHANG W, WANG Y, et al Advances in corrosion growth modeling for oil and gas pipelines: a review[J]. Process Safety and Environmental Protection, 2022, 171: 71- 86
[10]   MAZUMDER R K, SALMAN A M, LI Y, et al Reliability analysis of water distribution systems using physical probabilistic pipe failure method[J]. Journal of Water Resources Planning and Management, 2019, 145 (2): 04018097
doi: 10.1061/(ASCE)WR.1943-5452.0001034
[11]   DANN M R, HUYSE L The effect of inspection sizing uncertainty on the maximum corrosion growth in pipelines[J]. Structural Safety, 2018, 70: 71- 81
doi: 10.1016/j.strusafe.2017.10.005
[12]   蒋白懿, 叶友林, 李亚峰, 等 利用灰关联定权组合模型预测城镇给水管道腐蚀速率[J]. 沈阳建筑大学学报: 自然科学版, 2010, 26 (2): 4- 9
JIANG Baiyi, YE Youlin, LI Yafeng, et al. Corrosion prediction for pipeline in water supply of town by grey relation weight-making combination forecasting model[J]. Journal of Shenyang Jianzhu University: Natural Science Edition, 2010, 26 (2): 4- 9
[13]   郭浩. 供水管道电化学腐蚀机理研究 [D]. 天津: 天津大学, 2016.
GUO Hao. Research on electrochemical corrosion mechanism of water supply pipes [D]. Tianjin: Tianjin University, 2016.
[14]   SARIN P, SNOEYINK V, LYTLE D, et al Iron corrosion scales: model for scale growth, iron release, and colored water formation[J]. Journal of Environmental Engineering, 2004, 130 (4): 364- 373
doi: 10.1061/(ASCE)0733-9372(2004)130:4(364)
[15]   SARIN P, SNOEYINK V, BEBEE J, et al Physico-chemical characteristics of corrosion scales in old iron pipes[J]. Water Research, 2001, 35 (12): 2961- 2969
doi: 10.1016/S0043-1354(00)00591-1
[16]   OHTSUKA T, KOMATSU T Enhancement of electric conductivity of the rust layer by adsorption of water[J]. Corrosion Science, 2005, 47 (10): 2571- 2577
doi: 10.1016/j.corsci.2004.10.010
[17]   WANG Y, SHI T, ZHANG H, et al Hysteretic behavior and cyclic constitutive model of corroded structural steel under general atmospheric environment[J]. Construction and Building Materials, 2021, 270: 121474
doi: 10.1016/j.conbuildmat.2020.121474
[18]   WOLOSZYK K, GARBATOV Y, KŁOSOWSKI P Stress–strain model of lower corroded steel plates of normal strength for fitness-for-purpose analyses[J]. Construction and Building Materials, 2022, 323: 126560
doi: 10.1016/j.conbuildmat.2022.126560
[19]   OU Y-C, SUSANTO Y T T, ROH H Tensile behavior of naturally and artificially corroded steel bars[J]. Construction and Building Materials, 2016, 103: 93- 104
doi: 10.1016/j.conbuildmat.2015.10.075
[20]   WU H, LEI H, CHEN Y F Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion[J]. Construction and Building Materials, 2022, 315: 125706
doi: 10.1016/j.conbuildmat.2021.125706
[21]   ZHANG W, SONG X, GU X, et al Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials, 2012, 34: 409- 417
doi: 10.1016/j.conbuildmat.2012.02.071
[22]   IMPERATORE S, RINALDI Z, DRAGO C Degradation relationships for the mechanical properties of corroded steel rebars[J]. Construction and Building Materials, 2017, 148: 219- 230
doi: 10.1016/j.conbuildmat.2017.04.209
[23]   CHABOCHE J-L A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24 (10): 1642- 1693
doi: 10.1016/j.ijplas.2008.03.009
[24]   胡桂娟. 拉扭加载下金属材料的塑性行为 [D]. 南宁: 广西大学, 2012.
HU Guijuan. Plastic behavior of metals under tension-torsion loading: experimental and numerical research on yield surface evolution [D]. Nanning: Guangxi University, 2012.
[25]   孙昊. 粒子群神经网络在供水管线腐蚀预测中的应用研究 [D]. 大庆: 东北石油大学, 2018.
SUN Hao. Research on application of particle swarm neural network in corrosion prediction of water supply pipeline [D]. Daqing: Northeastern Petroleum University, 2018.
[1] Nan-guo JIN,Jia-hao HE,Chuan-qing FU,Xian-yu JIN. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 483-490.
[2] SHI Zhan-jie, TIAN Gang, ZHAO Wen-ke, WANG Zhi-hua. Application on ultra-shallow 3D seismic exploration technology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 912-917.