Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1706-1717    DOI: 10.3785/j.issn.1008-973X.2023.09.002
    
Improvement of multi-step brittle-plastic approach
Jun-chao JIN1,2(),Lai-hong JING1,2,Feng-wei YANG1,2,Zhi-yu SONG1,2,Peng-yang SHANG3
1. Yellow River Engineering Consulting Limited Company, Zhengzhou 450003, China
2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (Under Construction), Zhengzhou 450003, China
3. China Water Resources Beifang Investigation, Design and Research Limited Company, Tianjin 300222, China
Download: HTML     PDF(2812KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of multi-step brittle-plastic approach in stress-drop calculation, the defects of existing stress-drop calculation method based on the deviator stress dropping, the method based on the constant minor principal stress in the brittle-plastic process, the method based on the plastic potential theory and the method based on the invariant spherical stress were systematically analyzed in the principal stress space, combined with the deformation and the failure characteristics of feature points. Considering the Poisson’s effect in the brittle-plastic deformation and failure process, the method based on the plastic potential theory was improved. The corresponding stress update process was derived and embedded in the program Abaqus through the UMAT subroutine. The original stress-drop calculation method was replaced by the improved method, realizing the numerical simulation of elastic-plastic strain softening process. The calculation of full elastic-plastic deformation and failure process was further realized by introducing the plastic-strengthening algorithm, which is verified by several examples. The excavation simulation of Mine-by tunnel and auxiliary tunnels of a hydropower station diversion tunnel shows that the improved method can reasonably simulate the elastic-plastic deformation and failure phenomenon of surrounding rock.



Key wordsstrain softening      brittle-plastic      stress-drop      numerical algorithm      finite element     
Received: 01 November 2022      Published: 16 October 2023
CLC:  TU 45  
Fund:  中国博士后科学基金资助项目(2022M721299);河南省重点研发与推广专项(232102320339)
Cite this article:

Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.002     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1706


脆塑性迭代逼近算法的改进

针对应力跌落计算中脆塑性迭代逼近算法存在的问题,在主应力空间,结合特征点变形和破坏特征,通过理论推导,系统分析偏应力等比例跌落方法、最小主应力不变跌落方法、塑性位势跌落方法及应力球量不变跌落方法的缺陷. 考虑脆塑性变形和破坏过程中的泊松效应,提出改进的塑性位势跌落方法;推导应力跌落计算更新过程,编写UMAT子程序将该更新过程嵌入软件Abaqus,实现岩石弹塑性应变软化过程数值求解. 采用所提改进方法替换原有的应力跌落计算方法,实现弹塑性应变软化过程的数值模拟. 引入塑性强化算法,实现岩石弹塑性变形破坏全过程的数值计算,并进行多算例验证. 对不同地质条件的Mine-by试验洞及某水电站引水隧洞辅助洞进行开挖模拟,结果表明所提改进方法能够合理模拟工程中围岩弹塑性变形破坏现象.


关键词: 应变软化,  脆塑性,  应力跌落,  数值算法,  有限元 
Fig.1 Schematic of rock failure types
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0\\ 0\\\end{array} \right]$ $\left[ \begin{gathered} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\\end{gathered} \right] = \left[ \begin{gathered} \dfrac{ {\left( {1+2\beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \end{gathered} \right] $ $\left. {\begin{array}{*{20}{l} }\;\;\;{f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1 + \sin {\varphi _{\rm{p} } } } } = 0},\\\begin{array}{l}f _{\rm{r} }^{M - C}\left( { {\sigma ^{\rm{r} } } } \right) = \dfrac{ {\left( {1 + 2\beta } \right)\sigma _1^{\rm{p} } } }{3} - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } }\dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } } = 0.\end{array}\end{array} } \right\}$ 错误。除了主拉应力方向,横向应力方向也存在残余应力,与事实不符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} 0\\ 0\\ \sigma _3^{\rm{p} }\\ \end{array} \right]$ $\left[ \begin{gathered} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{gathered} \right] = \left[ \begin{gathered} \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1+2\beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \end{gathered} \right]$ $\left. {\begin{array}{*{20}{l} }\;\;\;{f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \left( {\sin {\varphi _{\rm{p} } } - 1} \right)\sigma _3^{\rm{p} } - 2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } = 0},\\\begin{array}{l}f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } }\dfrac{ {\left( {1 + 2\beta } \right)\sigma _3^{\rm{p} } } }{3} - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } } = 0.\end{array}\end{array} } \right\}$ 错误。除了主压应力方向,横向应力方向也存在残余应力,与事实不符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0\\ - \sigma _1^{\rm{p} }\\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \beta \sigma _1^{\rm{p} } \\ 0 \\ - \beta \sigma _1^{\rm{p} } \\\end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }}\left( { - \sigma _1^{\rm{p} } } \right) - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } }}{ {1+\sin {\varphi _{\rm{p} } } }} = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \beta \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }}\left( { - \beta \sigma _1^{\rm{p} } } \right) - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }} = 0}.\end{array} } \right\}$ 正确。残余阶段满足二向纯剪的应力状态,与事实相符
Tab.1 Defect of existing calculation method based on deviator stress dropping
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}. \end{array} } \right\}$ 错误。残余强度面屈服函数无解
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{r} } \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{r} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}. \end{array} } \right\}$ 正确。残余阶段满足单轴压缩的应力状态,与事实相符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ \sigma _3^{\rm{r} } \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} }+\dfrac{ {1 - \sin {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } }\sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{r} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}.\end{array} } \right\}$ 错误。残余阶段不满足二向纯剪的应力状态,与事实不符
Tab.2 Defects of existing calculation method based on constant minor principal stress in brittle-plastic process
破坏类型 峰值应力 应力跌落过程的主应力增量 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $ \;\;\;\; \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right] \left[ \begin{array}{c} - \Delta \varepsilon _1^{\rm{p}}\\0\\0\end{array} \right] = \left[ \begin{array}{c}- \left( {\lambda +2G} \right)\Delta \varepsilon _1^{\rm{p}}\\ - \lambda \Delta \varepsilon _1^{\rm{p}}\\ - \lambda \Delta \varepsilon _1^{\rm{p}}\end{array} \right]$ 错误。除了主拉伸方向应力发生改变之外,横向应力也发生改变,与事实不符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\\end{array} \right]$ $ \;\;\;\;\left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[ \begin{array}{c} \quad 0 \\\quad 0 \\ - \Delta \varepsilon _3^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c}\quad - \lambda \Delta \varepsilon _3^{\rm{p}} \\ \quad - \lambda \Delta \varepsilon _3^{\rm{p}} \\ - \left( {\lambda +2G} \right)\Delta \varepsilon _3^{\rm{p}} \\ \end{array} \right] $ 错误。除了主压缩方向应力发生改变之外,横向应力也发生改变,与事实不符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[ \begin{array}{c} \Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - \Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c} 2G\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - 2G\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] $ 正确。只有1和3方向应力发生变化,与事实相符
Tab.3 Defect of existing calculation method based on plastic potential theory
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[\begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{\sigma _1^{\rm{r}}}}{2} = \dfrac{{\sigma _1^{\rm{p}}}}{2}}, \\ {\dfrac{{\sigma _1^{\rm{r}}}}{{\sigma _1^{\rm{r}}}} = \dfrac{{\sigma _1^{\rm{p}}}}{{\sigma _1^{\rm{p}}}}} .\end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0}, \\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} 0 \\ 0\\ \sigma _3^{\rm{p} }\\\end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{ - \sigma _3^{\rm{r}}}}{2} = \dfrac{{ - \sigma _3^{\rm{p}}}}{2}}, \\ {\dfrac{0}{{ - \sigma _3^{\rm{r}}}} = \dfrac{0}{{ - \sigma _3^{\rm{p}}}}}. \end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = - \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0}, \\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = - \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p}}\\ 0 \\ - \sigma _1^{\rm{p}}\\ \end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{\sigma _1^{\rm{r}} - \sigma _3^{\rm{r}}}}{2} = \dfrac{{\sigma _1^{\rm{p}}- \left( { - \sigma _1^{\rm{p}}} \right)}}{2}}, \\ {\dfrac{{\sigma _1^{\rm{r}}}}{{\sigma _1^{\rm{r}} - \sigma _3^{\rm{r}}}} = \dfrac{{\sigma _1^{\rm{p}}}}{{\sigma _1^{\rm{p}}- \left( { - \sigma _1^{\rm{p}}} \right)}}} .\end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = \sigma _1^{\rm{p}}+\dfrac{{1 - \sin {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}}\sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0} ,\\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
Tab.4 Defect of existing calculation method based on invariant spherical stress
Fig.2 Uniaxial tension test of red sandstone[22]
破坏类型 峰值应力 应力跌落过程的主应力增量 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0 \\ 0 \\ \end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[\begin{array}{c} - \Delta \varepsilon _1^{\rm{p}} \\ v\Delta \varepsilon _1^{\rm{p}} \\ v\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c} - E\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ 0 \\ \end{array} \right] $ 正确。仅主拉伸方向应力发生改变与事实相符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\\end{array} \right]$ $\left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c} } {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array} } \right] \left[\begin{array}{c} v\Delta \varepsilon _3^{\rm{p} } \\ v\Delta \varepsilon _3^{\rm{p} } \\ - \Delta \varepsilon _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c}- \lambda \Delta \varepsilon _3^{\rm{p} } \\- \lambda \Delta \varepsilon _3^{\rm{p} }\\- \left( {\lambda +2G} \right)\Delta \varepsilon _3^{\rm{p} } \end{array} \right]$ 正确。仅主压缩方向应力发生改变,与事实相符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right] \left[ \begin{array}{c} \left( {1 - v} \right)\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - \left( {1 - v} \right)\Delta \varepsilon _1^{\rm{p}} \\\end{array} \right] = \left[\begin{array}{c} 2\left( {1 - v} \right)G\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - 2\left( {1 - v} \right)G\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] $ 正确。只有1和3方向应力发生变化,与事实相符
Tab.5 Rationality of improved calculation method based on plastic potential theory considering Poisson’s effect
Fig.3 Comparison of simulated stress-strain curves of red sandstone under uniaxial tension
Fig.4 Comparison of simulated stress-strain curves of granite under triaxial compression
MPa
试验数据 本研究方法 原方法
$ {\sigma _1} $ $ {\sigma _3} $ $ {\sigma _1} $ $ {\sigma _3} $ $ {\sigma _1} $ $ {\sigma _3} $
15.86 0 15.86 0 ?5.06 ?52.32
52.76 5 52.76 5 29.81 ?57.36
89.65 10 89.65 10 64.69 ?62.41
Tab.6 Simulated residual stress of two stress-drop calculation method
Fig.5 Comparison of simulated stress-strain curves of sandstone under compression and shear
Fig.6 Numerical procedures of full elasto-plastic deformation and failure process
Fig.7 Experimental simulation of triaxial compression for Tennessee marble and Sanxia granite
Fig.8 Example of circular tunnel excavation and FEM
Fig.9 Comparisons of numerical and theoretical results of circular tunnel excavation
Fig.10 Numerical model of Mine-by tunnel
参数 数值 参数 数值
弹性模量E/GPa 60 峰值内摩擦角φp/(o) 0
泊松比ν 0.25 残余内摩擦角φr/(o) 48
峰值黏聚力cp/MPa 40 剪胀角ψ/(o) 30
残余黏聚力cr/MPa 5 临界塑性应变η 0.003
Tab.7 Model parameters of surrounding rock of Mine-by tunnel
Fig.11 Simulated plastic and failure zones by proposed method
Fig.12 Monitored plastic and failure zones[29]
Fig.13 Plastic zone at section AK10+900[31]
Fig.14 Numerical model of auxiliary tunnel
参数 数值 参数 数值
弹性模量E/GPa 18.9 峰值内摩擦角φp/(o) 22.4
泊松比ν 0.22 残余内摩擦角φr/(o) 42
峰值黏聚力cp/MPa 20.9 剪胀角ψ/(o) 15
残余黏聚力cr/MPa 9.1 临界塑性应变η 0.005
Tab.8 Model parameters of surrounding rock of auxiliary tunnel
Fig.15 Simulated results by proposed method
[1]   CLAUSEN J, DAMKILDE L, ANDERSEN L An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space[J]. Computers and Structures, 2007, 85 (23/24): 1795- 1807
[2]   CLAUSEN J, DAMKILDE L An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45 (6): 831- 847
doi: 10.1016/j.ijrmms.2007.10.004
[3]   ABBO A J, LYAMIN A V, SLOAN S W, et al A C2 continuous approximation to the Mohr-Coulomb yield surface[J]. International Journal of Solids and Structures, 2011, 48 (21): 3001- 3010
doi: 10.1016/j.ijsolstr.2011.06.021
[4]   DAI Z, YOU T, XU X, et al Removal of singularities in Hoek-Brown criterion and its numerical implementation and applications[J]. International Journal of Geomechanics, 2018, 18 (10): 4018127
doi: 10.1061/(ASCE)GM.1943-5622.0001201
[5]   KINDRACHUK V M, UNGER J F A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration[J]. International Journal of Fatigue, 2017, 100: 215- 228
doi: 10.1016/j.ijfatigue.2017.03.015
[6]   XU X, CUI Z Investigation of a fractional derivative creep model of clay and its numerical implementation[J]. Computers and Geotechnics, 2020, 119: 103387
doi: 10.1016/j.compgeo.2019.103387
[7]   ZHENG H, LIU D F, LEE C F, et al Principle of analysis of brittle-plastic rock mass[J]. International Journal of Solids and Structures, 2005, 42 (1): 139- 158
doi: 10.1016/j.ijsolstr.2004.06.050
[8]   SØRENSEN E S, CLAUSEN J, DAMKILDE L Finite element implementation of the Hoek-Brown material model with general strain softening behavior[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 163- 174
doi: 10.1016/j.ijrmms.2015.05.005
[9]   KARAVELIĆ E, IBRAHIMBEGOVIC A, DOLAREVIĆ S Multi-surface plasticity model for concrete with 3D hardening/softening failure modes for tension, compression and shear[J]. Computers and Structures, 2019, 221: 74- 90
doi: 10.1016/j.compstruc.2019.05.009
[10]   JIA S, ZHAO Z, WU G, et al A coupled elastoplastic damage model for clayey rock and its numerical implementation and validation[J]. Geofluids, 2020, 2020: 9853782
[11]   许梦飞, 姜谙男, 史洪涛, 等 基于Hoek-Brown准则的岩体弹塑性损伤模型及其应力回映算法研究[J]. 工程力学, 2020, 37 (1): 195- 206
XU Meng-fei, JIANG An-nan, SHI Hong-tao, et al An elastoplastic damage constitutive rock model and its stress mapping algorithm based on Hoek-Brown criterion[J]. Engineering Mechanics, 2020, 37 (1): 195- 206
[12]   ZHANG J C, XU W Y, WANG H L, et al A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 84: 130- 141
doi: 10.1016/j.ijrmms.2015.11.011
[13]   ZHAO L Y, ZHU Q Z, SHAO J F A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress[J]. International Journal of Plasticity, 2018, 100: 156- 176
doi: 10.1016/j.ijplas.2017.10.004
[14]   ZHAO X, GUO J, HE E, et al Development of the coupled elastoplastic damage constitutional model of acidized shale gas formation based on experimental study[J]. Journal of Geophysics and Engineering, 2019, 16 (2): 332- 344
doi: 10.1093/jge/gxz010
[15]   WANG S, XU W, WANG W Experimental and numerical investigations on hydro-mechanical properties of saturated fine-grained sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104222
doi: 10.1016/j.ijrmms.2020.104222
[16]   李翻翻, 陈卫忠, 雷江, 等 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41 (1): 132- 140
LI Fan-fan, CHEN Wei-zhong, LEI Jiang, et al Study of mechanical properties of claystone based on plastic damage[J]. Rock and Soil Mechanics, 2020, 41 (1): 132- 140
doi: 10.16285/j.rsm.2018.2177
[17]   GAO M, ZHANG K, ZHOU Q, et al Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107120
doi: 10.1016/j.petrol.2020.107120
[18]   WANG S, ZHENG H, LI C, et al A finite element implementation of strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48 (1): 67- 76
doi: 10.1016/j.ijrmms.2010.11.001
[19]   沈新普, 岑章志, 徐秉业 弹脆塑性软化本构理论的特点及其数值计算[J]. 清华大学学报: 自然科学版, 1995, 35 (2): 22- 27
SHEN Xin-pu, CEN Zhang-zhi, XU Bing-ye The characteristics of elasto-brittle-plastic softening constitutive theory and its numerical calculation[J]. Journal of Tsinghua University: Science and Technology, 1995, 35 (2): 22- 27
[20]   舒芹, 王学滨, 赵扬锋, 等 应力球量不变应力跌落方式下非均质岩样破坏过程数值模拟[J]. 岩土力学, 2020, 41 (10): 3465- 3472
SHU Qin, WANG Xue-bin, ZHAO Yang-feng, et al Numerical simulation of failure processes of heterogeneous rock specimens under assumption of invariant spherical stress during stress drop[J]. Rock and Soil Mechanics, 2020, 41 (10): 3465- 3472
[21]   金俊超, 佘成学, 尚朋阳 基于Hoek-Brown准则的应变软化模型有限元数值实现研究[J]. 工程力学, 2020, 37 (1): 43- 52
JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang A finite element implementation of the strain-softening model based on the Hoed-Brown criterion[J]. Engineering Mechanics, 2020, 37 (1): 43- 52
[22]   ZENG B, HUANG D, YE S, et al Triaxial extension tests on sandstone using a simple auxiliary apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 120: 29- 40
doi: 10.1016/j.ijrmms.2019.06.006
[23]   MENG F, ZHOU H, ZHANG C, et al Evaluation methodology of brittleness of rock based on post-peak stress-strain curves[J]. Rock Mechanics and Rock Engineering, 2015, 48: 1787- 1805
doi: 10.1007/s00603-014-0694-6
[24]   许江, 刘婧, 吴慧, 等 压剪应力条件下砂岩开裂扩展过程的试验研究[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 3042- 3048
XU Jiang, LIU Jing, WU Hui, et al Test study of sandstone cracking and propagation process under compressive-shear stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 3042- 3048
[25]   韩建新, 李术才, 李树忱, 等 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. 岩土力学, 2013, 34 (2): 342- 346
HAN Jian-xin, LI Shu-cai, LI Shu-chen, et al Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. Rock and Soil Mechanics, 2013, 34 (2): 342- 346
[26]   沈华章, 王水林, 刘泉声 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学, 2014, 35 (6): 1647- 1654
SHEN Hua-zhang, WANG Shui-lin, LIU Quan-sheng Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35 (6): 1647- 1654
[27]   LEE Y, PIETRUSZCZAK S A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23 (5): 588- 599
doi: 10.1016/j.tust.2007.11.002
[28]   PARK K H Similarity solution for a spherical or circular opening in elastic-strain softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 151- 159
doi: 10.1016/j.ijrmms.2014.07.003
[29]   HAJIABDOLMAJID V, KAISER P K, MARTIN C D Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39 (6): 731- 741
doi: 10.1016/S1365-1609(02)00051-5
[30]   ZHAO X G, CAI M Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47 (5): 723- 738
doi: 10.1016/j.ijrmms.2010.04.003
[31]   XU D, ZHOU Y, QIU S, et al Elastic modulus deterioration index to identify the loosened zone around underground openings[J]. Tunnelling and Underground Space Technology, 2018, 82: 20- 29
doi: 10.1016/j.tust.2018.07.032
[1] Ling-mao WANG,Wei-jian ZHAO. Simulation on pullout behavior of mechanical anchorage reinforcing bars based on refined rib-scale modeling[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1573-1584.
[2] Xiao-dan CHEN,Ao WU,Rui-jie ZHAO,En-xiang XU. Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1680-1688.
[3] Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.
[4] Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.
[5] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[6] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[7] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[8] Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.
[9] Mei-jiang GUI,Xiao-hu ZHOU,Xiao-liang XIE,Shi-qi LIU,Hao LI,Jin-li WANG,Zeng-guang HOU. Analysis and simulation of magnetic field for robot tactile perception[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1144-1151.
[10] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[11] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[12] Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.
[13] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[14] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[15] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.