Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1402-1409    DOI: 10.3785/j.issn.1008-973X.2023.07.015
    
Seismic performance of steel frame with new high strength silicate wallboard
Guo-qing XIE1(),Mi WANG2,*(),De-wen KONG1
1. College of Civil Engineering, Guizhou University, Guiyang 550025, China
2. School of Civil Engineering, Central South University, Changsha 410083, China
Download: HTML     PDF(2445KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Two single-story single-span full-scale steel frame pseudo-static tests were conducted in order to analyze the influence of new high-strength silicate wall panels on the seismic performance of steel frame structures. The steel frame specimens with embedded wall panels were compared with pure steel frame specimens. The failure mode of the specimens and the effect of wall panels on the seismic performance of steel frame structures were obtained under horizontal low-cycle reciprocating loads. The test results showed that the new high-strength silicate wallboard steel frame structure had good seismic performance, and the bearing capacity, ductility and energy dissipation capacity of the steel frame structure were increased by the embedded wallboard. The numerical simulation of the test was conducted by finite element analysis method, and the results of finite element analysis agreed with the test. The parametric analysis of the height-span ratio, axial compression ratio and wall panel thickness of the test shows that changing the height-span ratio has a greater impact on the seismic performance of the structure. The recommended value of the height-span ratio is 0.50-0.75. The axial compression ratio has a great influence on the bearing capacity of the structure, and it is recommended that the axial compression ratio is less than 0.4. Changing the thickness of the wall has little effect on the initial stiffness of the structure, but has a certain effect on the bearing capacity of the structure.



Key wordssteel frame      new high-strength silicate wallboard      failure mode      seismic performance      finite element analysis     
Received: 27 July 2022      Published: 17 July 2023
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(51968009);贵州省科技计划资助项目([2018] 2816)
Corresponding Authors: Mi WANG     E-mail: xieguoqing0912@126.com;214801008@csu.edu.cn
Cite this article:

Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.015     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1402


新型高强硅酸盐墙板钢框架抗震性能

为了分析新型高强硅酸盐墙板对钢框架结构抗震性能的影响,开展2榀单层单跨足尺钢框架拟静力试验. 将内嵌墙板钢框架试件和纯钢框架试件进行对比,得到在水平低周往复荷载作用下试件的破坏形态和墙板对钢框架结构抗震性能的影响. 试验结果表明,新型高强硅酸盐墙板钢框架结构具有良好的抗震性能,通过内嵌墙板增加了钢框架结构的承载能力、延性和耗能能力. 采用有限元分析方法对试验进行数值模拟,有限元分析结果与试验吻合较好. 对试验的高跨比、轴压比和墙板厚度进行参变分析可知,改变高跨比对结构抗震性能的影响较大,建议高跨比取值为0.50~0.75. 轴压比对结构的承载能力影响较大,建议轴压比取值小于0.4. 改变墙体厚度对结构的初始刚度影响不大,对结构承载能力有一定的影响.


关键词: 钢框架,  新型高强硅酸盐墙板,  破坏模式,  抗震性能,  有限元分析 
Fig.1 Specimen size and installation process
Fig.2 Steel material property test device
试件编号 fy/MPa fu/MPa Es/GPa γ
梁翼缘 290 432 2.02×105 0.29
梁腹板 314 420 1.96×105 0.27
连接板 312 425 2.03×105 0.24
钢 柱 298 420 2.04×105 0.28
Tab.1 Test results of steel material property
Fig.3 Schematic diagrams of measuring points arrangement of specimen
Fig.4 Test loading device
Fig.5 Test phenomenon of specimen of KJ-1
Fig.6 Test phenomenon of specimen of KJ-2
Fig.7 Hysteresis curve of specimens
Fig.8 Comparison of skeleton curves of specimens
编号 加载方向 Δy Δu $ {\theta _{\text{y}}} $/mrad $ {\theta _{\text{u}}} $/mrad $ \mu $ ${\mu _{\theta } }$
KJ-1 正向 44.0 146 19.6 66.7 3.3 3.3
KJ-1 反向 ?45.9 ?109.9 20.4 50.0 2.4 2.4
KJ-2 正向 65.8 137.4 29.4 66.7 2.1 2.1
KJ-2 反向 ?60.5 ?141.9 27.0 62.5 2.3 2.3
Tab.2 Mechanical properties of specimens under low cycle loading
Fig.9 Comparison of specimen stiffness degradation curve
Fig.10 Hysteresis loop of load-displacement curve
Δ/Δy KJ-1 KJ-2
W/(kN·mm) E W/(kN·mm) E
1 390 0.293 1261 0.314
2 7524 0.566 12138 0.711
3 22058 0.938 34108 1.071
4 37706 1.206 50599 1.219
Tab.3 Energy consumption capacity
Fig.11 Grid model of KJ-2
Fig.12 Hysteresis curve comparison of specimens
Fig.13 Comparison of skeleton curves of specimens
Fig.14 Comparison of skeleton curve of specimens under different height span ratios
Fig.15 Comparison of skeleton curves of specimens under different axial compression ratios
Fig.16 Comparison of skeleton curves of specimens with different wall thicknesses
[17]   WANG J, LI B Cyclic testing of square CFST frames with ALC panel or block walls[J]. Journal of Constructional Steel Research, 2017, 130: 264- 279
doi: 10.1016/j.jcsr.2016.12.006
[18]   ISHIDA T, TENDERAN R, KOHTAKI K, et al Experimental study on full-scale steel moment-resisting frames with nonstructural walls subjected to multiple earthquakes[J]. Engineering Structures, 2021, 242: 112549
doi: 10.1016/j.engstruct.2021.112549
[19]   CAO W, WANG R, YIN F, et al Seismic performance of a steel frame assembled with a CFST-bordered composite wall structure[J]. Engineering Structures, 2020, 219: 110853
doi: 10.1016/j.engstruct.2020.110853
[20]   HOU H, CHOU C, ZHOU J, et al Cyclic tests of steel frames with composite lightweight infill walls[J]. Earthquakes and Structures, 2016, 10 (1): 163- 78
doi: 10.12989/eas.2016.10.1.163
[21]   BAI L, HOU C, CAO M, et al Cyclic performance of steel moment frames with prefabricated RC and ECC wall panels[J]. Engineering Structures, 2021, 242: 112492
doi: 10.1016/j.engstruct.2021.112492
[22]   中华人民共和国建设部. 建筑隔墙用轻质条板通用技术要求: JG/T 169—2016 [S]. 北京: 中国标准出版社, 2016.
[23]   中国国家标准化管理委员会. 金属材料拉伸试验第一部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2010.
[24]   中国国家标准化管理委员会. 钢及钢材产品力学性能试验取样位置及试样制备: GB/T 2975—2018 [S]. 北京: 中国标准出版社, 2018.
[25]   中华人民共和国国家标准. 建筑抗震试验方法规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015.
[26]   谢国庆, 付汝宾, 任虎, 等 低周往复荷载作用下的Q235钢框架结构抗震性能研究[J]. 中国水运(下半月), 2021, 21 (4): 142- 143
XIE Guo-qing, FU Ru-bin, REN Hu, et al Seismic performance of Q235 steel frame structures under low cycle reciprocating loads[J]. China Water Transport, 2021, 21 (4): 142- 143
[27]   王金昌, 陈页开. ABAQUS 在土木工程中的应用[M]. 杭州: 浙江大学出版社, 2006.
[1]   ZHANG Y, LI D Development and testing of precast concrete-filled square steel tube column-to-RC beam connections under cyclic loading[J]. Construction and Building Materials, 2021, 280 (19): 1- 16
[2]   宋慧慧, 王静峰, 丁兆东, 等 内嵌预制SVMFC夹芯复合墙板钢框架结构数值分析[J]. 合肥工业大学学报: 自然科学版, 2020, 43 (11): 1538- 1543
SONG Hui-hui, WANG Jing-feng, DIGN Zhao-dong, et al. Numerical analysis of steel frames with embedded precast steel-grid vitrified microsphere foamed concrete sandwich composite wall panels[J]. Journal of Hefei University of Technology: Natural Science Edition, 2020, 43 (11): 1538- 1543
[3]   中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011―2010 [S]. 北京: 中国建筑工业出版社, 2010.
[4]   李晓东, 康永康, 宋子阳, 等 纤维石膏基复合墙板轻钢框架抗震性能分析[J]. 哈尔滨工程大学学报, 2020, 41 (12): 1797- 1803
LI Xiao-dong, KANG Yong-kang, SONG Zi-yang, et al Seismic behavior of lightweight steel frame with fiber gypsum-based composite wallboard[J]. Journal of Harbin Engineering University, 2020, 41 (12): 1797- 1803
[5]   杨伟, 侯爽, 欧进萍 从汶川地震分析填充墙对结构整体抗震能力影响[J]. 大连理工大学学报, 2009, 49 (5): 770- 775
YANG Wei, HOU Shuang, OU Jin-ping Analysis of the influence of infilled wall on the overall seismic capacity of structure from Wenchuan earthquake[J]. Journal of Dalian University of Technology, 2009, 49 (5): 770- 775
doi: 10.7511/dllgxb200905024
[6]   ZHANG C, LI Z, HUANG W, et al. Seismic performance of semi-rigid steel frame infilled with prefabricated damping wall panels[J]. Journal of Constructional Steel Research, 2021, 184: 106797
doi: 10.1016/j.jcsr.2021.106797
[7]   DU D, WANG S, LI W, et al. Seismic performance of the pre-fabricated steel frame infilled with AAC wall panels and their joint connection: full-scale shaking table test[J]. Journal of Earthquake and Tsunami, 2019, 13 (3): 1940004
[8]   DE M G Effect of lightweight cladding panels on the seismic performance of moment resisting steel frames[J]. Engineering Structures, 2005, 27 (11): 1662- 1676
doi: 10.1016/j.engstruct.2005.06.004
[9]   谢国庆, 任虎, 罗双, 等 预制高强硅酸盐墙板力学性能试验研究[J]. 混凝土与水泥制品, 2021, 56 (10): 71- 75
XIE Guo-qing, REN Hu, LUO Shuang, et al. Experimental study on mechanical properties of prefabricated high-strength silicate wallboard[J]. Concrete and Cement Products, 2021, 56 (10): 71- 75
[10]   ACHAL V, PAN X, ÖZYURT N Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation[J]. Ecological Engineering, 2011, 37 (4): 554- 559
doi: 10.1016/j.ecoleng.2010.11.009
[11]   SHAIKH F, DOBSON J Effect of fly ash on compressive strength and chloride binding of seawater-mixed mortars[J]. Journal of Sustainable Cement-Based Materials, 2019, 8 (5): 275- 289
doi: 10.1080/21650373.2019.1582370
[12]   JAYANTA C, SULAGNO B Replacement of cement by fly ash in concrete[J]. International Journal of Civil Engineering, 2016, 3 (8): 40- 42
[13]   HEFNI Y, ZAHER Y, WAHAB M Influence of activation of fly ash on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 172: 728- 734
doi: 10.1016/j.conbuildmat.2018.04.021
[14]   SHAO Y, HAO S, LUO Y, et al Investigation of durability of wall materials concrete prepared with fly ash[J]. Applied Mechanics and Materials, 2012, 174: 657- 661
[15]   LI Z, HE M, WANG X, et al. Seismic performance assessment of steel frame infilled with prefabricated wood shear walls [J]. Journal of Constructional Steel Research, 2018, 140: 62-73.
[1] Guo-chen ZHAO,Long-jun XU,Jia-jun DU,Jing-zhou ZHU,Xing-ji ZHU,Li-li XIE. Probabilistic seismic demand models for steel frame structures subjected to pulse-like ground motions[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1080-1089.
[2] Zhi-an JIAO,Jian-peng WEI,Yang GUO,Liang-jun DAI,Li-min TIAN. Experimental study on seismic performance of new earthquake-resilient semi-rigid joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1090-1099.
[3] Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.
[4] Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.
[5] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[6] Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.
[7] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[8] Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.
[9] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[10] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[11] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[12] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[13] Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.
[14] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[15] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.