Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1080-1089    DOI: 10.3785/j.issn.1008-973X.2023.06.003
    
Probabilistic seismic demand models for steel frame structures subjected to pulse-like ground motions
Guo-chen ZHAO1(),Long-jun XU1,*(),Jia-jun DU2,Jing-zhou ZHU2,Xing-ji ZHU2,Li-li XIE1
1. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
2. School of Ocean Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China
Download: HTML     PDF(1127KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Finite element models of steel frame structures were built by a commercial finite element software Abaqus, and the simulated seismic responses of the steel frame structures to pulse-like ground motions were used as the data to develop probabilistic seismic demand models. Four types of seismic demands were considered, including the maximum bottom shear force, the maximum bottom moment, the maximum story drift, and the top displacement of steel frame structures, and each of them was represented by a separate probabilistic model. In order to facilitate the application of the model and make the model parameters have clear physical meaning, the probabilistic seismic demand models were obtained by adding correction terms to the results obtained by code-based methods and mechanics principles. The Bayesian method was used for model optimization and parameter estimation. Results show that the four probabilistic seismic demand models can obtain the unbiased estimation of the finite element numerical value. Using the maximum story drift probability model, the seismic fragility curve of a 20-story steel frame structure was obtained. The analysis shows that the failure probability of the steel frame structure to pulse-like ground motions is significantly higher than that of ordinary ground motions.



Key wordsprobability seismic demand model      steel frame structure      pulse-like ground motion      nonlinear time history analysis      Bayesian method     
Received: 16 May 2022      Published: 30 June 2023
CLC:  P 315.9  
Fund:  国家自然科学基金资助项目(51908169,U2139207);江汉大学学科特色专项项目资助(2022XKZX-ZC-01)
Corresponding Authors: Long-jun XU     E-mail: zgc011@126.com;xulongjun80@163.com
Cite this article:

Guo-chen ZHAO,Long-jun XU,Jia-jun DU,Jing-zhou ZHU,Xing-ji ZHU,Li-li XIE. Probabilistic seismic demand models for steel frame structures subjected to pulse-like ground motions. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1080-1089.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.003     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1080


脉冲型地震动作用下钢框架结构地震需求概率模型

基于实际脉冲型地震动数据建立钢框架结构的Abaqus有限元模型,建立钢框架结构4种形式(最大底部剪力、最大底部弯矩、最大层间位移角和顶层位移)的地震需求概率模型. 为了方便模型应用和明确模型参数的物理意义,构建模型时在规范方法和力学原理计算结果的基础上增加修正项,基于贝叶斯方法进行模型优化和参数估计. 结果表明,所建立的4种地震需求概率模型能够获取有限元数值解的无偏估计. 以最大层间位移角概率模型为例,可以得到20层钢框架结构的地震易损性曲线. 相对于普通类型地震动作用,钢框架结构在脉冲型地震动作用下的失效概率显著偏大.


关键词: 地震需求概率模型,  钢框架结构,  脉冲型地震动,  非线性时程分析,  贝叶斯方法 
Fig.1 Comparison of maximum bottom shear force obtained by different methods
分析步 $ {\theta _{{_{V1}}}} $ $ {\theta _{{_{V2}}}} $ $ {\theta _{{_{V3}}}} $ $ {\theta _{{_{V4}}}} $ $ {\theta _{{_{V5}}}} $ $ {\theta _{{_{V6}}}} $ $ {\theta _{{_{V7}}}} $ $ {\theta _{{_{V8}}}} $ $ {\theta _{{_{V9}}}} $ $ {\theta _{{_{V10}}}} $ $\mu{(\sigma _{ {_V} }) }$
1 0.179 0.092 0.916 0.721 0.638 0.315 0.524 0.519 0.554 0.066 0.127
2 0.139 0.092 0.650 0.781 0.279 0.460 0.465 0.537 0.068 0.128
3 0.124 0.093 0.613 0.236 0.311 0.238 0.427 0.067 0.128
4 0.057 0.093 0.274 0.289 0.212 0.449 0.068 0.130
5 0.056 0.095 0.351 0.329 0.224 0.070 0.133
6 0.059 0.104 0.129 0.110 0.072 0.136
7 0.076 0.100 0.245 0.050 0.165
Tab.1 Coefficients of variations and standard deviations of maximum bottom shear force probabilistic model parameters in optimization process
参数 μ σ ρ
$ {\theta _{_{{V2}}}} $ $ {\theta _{_{{V7}}}} $ $ {\theta _{_{{V10}}}} $ $ {\sigma _{{_V}}} $
$ {\theta _{_{{V2}}}} $ ?0.023 2 0.002 4 1.00
$ {\theta _{_{{V7}}}} $ ?0.003 9 0.000 5 ?0.26 1.00
$ {\theta _{_{{V10}}}} $ ?0.144 8 0.010 4 0.42 ?0.64 1.000
${\sigma _{{_V} } }$ 0.136 1 0.008 6 ?0.02 0.01 ?0.004 1.0
Tab.2 Posterior statistics of parameters for maximum bottom shear force probabilistic model
Fig.2 Comparison of maximum bottom moment obtained by different methods
参数 μ σ ρ
$ {\theta _{_{{M2}}}} $ $ {\theta _{_{{M10}}}} $ $ {\sigma _{_{{M}}}} $
$ {\theta _{_{{M2}}}} $ ?0.0151 0.0032 1.000
$ {\theta _{_{{M10}}}} $ 0.3426 0.0423 0.590 1.00
$ {\sigma _{_{{M}}}} $ 0.1626 0.0086 0.001 0.02 1.0
Tab.3 Posterior statistics of parameters for maximum bottom moment probabilistic model
Fig.3 Comparison of maximum story drift obtained by different methods
参数 μ σ ρ
$ {\theta _{{\delta} 2}} $ $ {\theta _{{\delta} 8}} $ $ {\theta _{{\delta} 10}} $ $ {\sigma _{{\delta} 10}} $
$ {\theta _{{\delta} 2}} $ 0.022 0.004 0 1.000
$ {\theta _{{\delta} 8}} $ 0.001 0.0003 ?0.130 1.000 00
$ {\theta _{{\delta} 10}} $ ?0.079 0.012 0 0.310 ?0.420 00 1.00
$ {\sigma _{{\delta} 10}} $ 0.211 0.014 0 ?0.007 0.00005 ?0.02 1.0
Tab.4 Posterior statistics of parameters for maximum story drift probabilistic model
Fig.4 Comparison of top displacement obtained by different methods
参数 μ σ ρ
$ {\theta _{{d1}}} $ $ {\theta _{{d2}}} $ $ {\theta _{{d5}}} $ $ {\theta _{{d6}}} $ $ {\theta _{{d10}}} $ $ {\sigma _{{d}}} $
$ {\theta _{{d1}}} $ 0.808 0.081 1.00
$ {\theta _{{d2}}} $ 0.025 0.004 ?0.64 1.000
$ {\theta _{{d5}}} $ 0.026 0.006 ?0.50 ?0.120 1.00
$ {\theta _{{d6}}} $ ?0.461 0.118 ?0.61 0.200 0.42 1.00
$ {\theta _{{d10}}} $ 0.232 0.065 ?0.32 0.690 ?0.19 0.24 1.000
$ {\sigma _{{d}}} $ 0.179 0.012 ?0.03 0.008 0.03 0.01 ?0.007 1.0
Tab.5 Posterior statistics of parameters for top displacement probabilistic model
Fig.5 Probability density curves of four types of seismic demand for 20-story steel frame constructed by proposed probability model
Fig.6 Comparison of fragility curves obtained by different methods for 20-story frame structure
[1]   潘钦锋, 颜桂云, 吴应雄, 等 近断层脉冲型地震动作用下高层建筑组合隔震的减震性能研究[J]. 振动工程学报, 2019, 32 (5): 845- 855
PAN Qin-feng, YAN Gui-yun, WU Ying-xiong, et al Seismic absorption performance of composite isolation for high-rise buildings subjected to near-fault pulse ground motions[J]. Journal of Vibration Engineering, 2019, 32 (5): 845- 855
[2]   董文悝, 高广运, 宋健, 等 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报: 工学版, 2018, 52 (9): 1651- 1657
DONG Wen-kui, GAO Guang-yun, SONG Jian, et al Effect of near-fault pulse-like ground motion with fling-step on site liquefaction[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1651- 1657
[3]   贾俊峰, 杜修力, 韩强 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36 (1): 1- 12
JIA Jun-feng, DU Xiu-li, HAN Qiang A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, 36 (1): 1- 12
[4]   苏鹏, 陈彦江, 闫维明 近断层方向性效应地震作用下曲线梁桥试验[J]. 哈尔滨工业大学学报, 2019, 51 (6): 148- 155
SU Peng, CHEN Yan-jiang, YAN Wei-ming Experimental study on curved girder bridge under near-fault ground motion with directivity effect[J]. Journal of Harbin Institute of Technology, 2019, 51 (6): 148- 155
[5]   江义, 杨迪雄, 李刚 近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J]. 建筑结构学报, 2010, 31 (9): 103- 110
JIANG Yi, YANG Di-xiong, LI Gang Effects of forward directivity and fling step of near-fault ground motions on seismic responses of high-rise steel structures[J]. Journal of Building Structures, 2010, 31 (9): 103- 110
[6]   于晓辉, 吕大刚, 王光远 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30 (8): 172- 179
YU Xiao-hui, LÜ Da-gang, WANG Guang-yuan Discussions on probabilistic seismic demand models[J]. Engineering Machanics, 2013, 30 (8): 172- 179
[7]   黄博, 廖凯龙, 赵宇, 等 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报: 工学版, 2019, 53 (4): 692- 701
HUANG Bo, LIAO Kai-long, ZHAO Yu, et al Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 692- 701
[8]   吕大刚, 宋鹏彦, 于晓辉, 等. 土木工程结构抗震可靠度理论的研究与发展 [C]// 第二届结构工程新进展国际论坛论文集. 大连: 中国建筑工业出版社, 2008: 775-787.
LV Da-gang, SONG Peng-yan, YU Xiao-hui, et al. Research and developments of seismic reliability theory of civil engineering structures [C]// Proceedings of the second International Forum on Advances in Structural Engineering. Dalian: China Architecture and Building Press, 2008: 775-787.
[9]   徐铭阳, 贾明明, 吕大刚 基于CPU并行计算的概率地震需求分析与地震易损性分析[J]. 土木工程学报, 2020, 53 (Suppl.2): 190- 197
XU Ming-yang, JIA Ming-ming, LV Da-gang Probabilistic seismic demand analysis and seismic fragility analysis based on CPU parallel computing[J]. China Civil Engineering Journal, 2020, 53 (Suppl.2): 190- 197
[10]   王伟, 胡书领, 邹超 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究[J]. 建筑结构学报, 2021, 42 (4): 42- 49
WANG Wei, HU Shu-ling, ZOU Chao Seismic fragility analysis of beam-through steel braced frames based on IDA method[J]. Journal of Building Structures, 2021, 42 (4): 42- 49
[11]   乔云龙, 王自法 黏滞阻尼器对高层钢结构地震易损性的影响[J]. 地震工程与工程振动, 2020, 40 (1): 205- 212
QIAO Yun-long, WANG Zi-fa Effect of viscous damper on seismic vulnerability of high-rise steel structures[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40 (1): 205- 212
[12]   李钢, 张天昊, 董志骞 长耗能梁-偏心支撑机制对中心支撑钢框架结构抗震性能的影响[J]. 建筑科学与工程学报, 2020, 37 (3): 10- 17
LI Gang, ZHANG Tian-hao, DONG Zhi-qian Effect of long-link EBF mechanism on seismic performance of steel CBF[J]. Journal of Architecture and Civil Engineering, 2020, 37 (3): 10- 17
[13]   郑文豪 薄弱层对钢框架结构抗震性能影响分析[J]. 特种结构, 2020, 37 (2): 90- 95
ZHENG Wen-hao Effect of weak stories on seismic behavior of steel frame structures[J]. Special Structures, 2020, 37 (2): 90- 95
[14]   徐善华, 张宗星, 李柔, 等 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35 (12): 107- 115
XU Shan-hua, ZHANG Zong-xing, LI Rou, et al A method for the seismic vulnerability assessment of corroded steel structures[J]. Engineering Mechanics, 2018, 35 (12): 107- 115
[15]   OHTORI Y, CHRISTENSON R E, SPENCER B F, et al Benchmark control problems for seismically excited nonlinear buildings[J]. Journal of Engineering Mechanics, 2004, 130 (4): 366- 385
doi: 10.1061/(ASCE)0733-9399(2004)130:4(366)
[16]   中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
[17]   GARDONI P, DER KIUREGHIAN A, MOSALAM K M Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, 2002, 128 (10): 1024- 1038
doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024)
[18]   GARDONI P, MOSALAM K M, KIUREGHIAN A D Probabilistic seismic demand models and fragility estimates for RC bridges[J]. Journal of Earthquake Engineering, 2003, 7 (Suppl.1): 79- 106
[19]   BAKHTIARY E, GARDONI P Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks[J]. Engineering Structures, 2016, 114: 25- 34
doi: 10.1016/j.engstruct.2016.01.050
[20]   ZHAO G, GARDONI P, XU L, et al Probabilistic seismic demand models for circular tunnels subjected to transversal seismic load[J]. Tunnelling and Underground Space Technology, 2022, 125: 104527
doi: 10.1016/j.tust.2022.104527
[21]   BAKER J W Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97 (5): 1486- 1501
doi: 10.1785/0120060255
[22]   CHANG Z, DE LUCA F, GODA K Automated classification of near-fault acceleration pulses using wavelet packets[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34 (7): 569- 585
doi: 10.1111/mice.12437
[23]   FENG J, ZHAO B, ZHAO T Quantitative identification of near-fault pulse-like ground motions based on variational mode decomposition technique[J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 107009
doi: 10.1016/j.soildyn.2021.107009
[24]   ZHAO G, ZHU J, ZHU X, et al. Effects of the predominant pulse on the inelastic displacement ratios of pulse-like ground motions based on wavelet analysis[J]. Advances in Civil Engineering, 2021, 2021: 9154890
[25]   BRAY J D, RODRIGUEZ-MAREK A Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering, 2004, 24 (11): 815- 828
doi: 10.1016/j.soildyn.2004.05.001
[26]   李玉占, 李永梅. 基于增量动力分析的高层钢框架地震易损性分析 [C]// 第十四届全国现代结构工程学术研讨会论文集. 天津: [s.n.], 2014: 781-787.
LI Yu-zhan, LI Yong-mei. Seismic fragility analysis of high-rise steel frame based on incremental dynamic analysis [C]// Proceedings of the 14th National Symposium on Modern Structural Engineering. Tianjin: [s.n.], 2014: 781-787.
[1] DONG Wen-kui, GAO Guang-yun, SONG Jian, XUE Shuai. Effect of near-fault pulse-like ground motion with fling-step on site liquefaction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1651-1657.
[2] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[3] HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1258-1266.