1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2. Key Laboratory of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an University of Architecture and Technology, Xi'an 710055, China 3. Shanghai Key Laboratory of Structural Safety, Shanghai Construction Research Institute Limited Company, Shanghai 200032, China 4. CNPC East China Design Institute Limited Company, Qingdao 266000, China
Ultra-high performance concrete (UHPC) was proposed to connect precast columns in order to improve the seismic performance of member connections in precast structures. Six precast columns constructed with UHPC in plastic hinge zones and one normal concrete (NC) cast-in-place column were tested under the quasi-static tests. The effects of the axial load ratio, lap length, stirrup ratio and setting of short steel bar on failure modes, hysteretic characteristics, bearing capacity, deformation capacity and energy dissipation capacity of the specimens were analyzed. Results showed that the seismic performance of precast columns with lap length being 8 times the diameter of the steel bar was higher than that of normal concrete cast-in-place columns, which can achieve the same effect as the normal concrete cast-in-place column. The bearing capacity of precast columns gradually increases, and the deformation capacity and energy dissipation capacity significantly increase with the increase of lap length. The setting of short steel bar in the lap-splicing section can improve the flexural bearing capacity of the precast column, change the failure mode and move the plastic hinge area upward. A formula based on the test results for calculating the flexural capacity of precast columns was proposed by considering the tensile strength of UHPC, and the calculated results accorded well with the test results.
Fig.1Dimensions and reinforcement arrangement of normal concrete column/ultra high performance concrete assembled column
编号
S/mm2
λt/λd
纵筋
Ls
箍筋
RCZ-1
250×250
0.33/0.75
6?20 mm
—
8@100 mm/50 mm
RUZ-2
250×250
0.33/0.75
6?20 mm/6?20 mm
8d
8@100 mm/50 mm
RUZ-3
250×250
0.17/0.40
6?20 mm/6?20 mm
8d
8@100 mm/50 mm
RUZ-4
250×250
0.33/0.75
6?20 mm/6?20 mm
8d
8@100 mm/160 mm
RUZ-5
250×250
0.33/0.75
6?20 mm/6?20 mm
6d
8@100 mm/50 mm
RUZ-6
250×250
0.33/0.75
6?20 mm/6?20 mm
12d
8@100 mm/50 mm
RUZ-7
250×250
0.33/0.75
6?20 mm/10?20 mm
8d
8@100 mm/50 mm
Tab.1Design parameters of NC column/UHPC assembled column
Fig.2Layout of short reinforcement bars
Vt/%
fcu /MPa
fc /MPa
ft /MPa
2
108.13
102.35
5.21
Tab.2Mechanical properties of UHPC
钢筋级别
d/mm
fy /MPa
fu /MPa
δ/%
HPB300
8
360
525
27
HRB400
20
470
660
16.3
Tab.3Mechanical properties of steel bars
Fig.3Test set-up and loading program
Fig.4Displacement meter arrangement of NC column/UHPC assembled column
Fig.5Failure patterns of NC column/UHPC assembled column
Fig.6Hysteretic curves of specimens
Fig.7Comparison of skeleton curves of column under different parameters
试件编号
Pcr /kN
Δcr /mm
Py /kN
Δy /mm
Pm /kN
Δm /mm
Pu /kN
Δu /mm
μ
RCZ-1
60.23
2.14
132.22
8.14
154.41
16.05
131.25
31.01
3.81
RUZ-2
70.11
2.51
134.08
9.29
161.63
17.03
137.39
31.70
3.41
RUZ-3
49.81
2.01
105.49
8.42
125.12
17.03
106.35
25.88
3.07
RUZ-4
59.98
1.93
139.52
9.91
168.90
17.05
143.57
27.03
2.73
RUZ-5
70.25
2.48
130.68
8.54
156.48
17.04
133.01
27.97
3.28
RUZ-6
70.00
2.75
144.36
9.62
167.42
20.03
142.31
47.28
4.91
RUZ-7
90.03
3.71
152.41
10.51
183.37
22.02
155.86
26.95
2.56
Tab.4Experimental results of characteristic points of NC column and UHPC assembled column
Fig.8Structural strength reduction comparison of column under different parameters
Fig.9Comparison of column stiffness degradation curves under different parameters
试件编号
E/ (kN·m)
P=Py
P=Pm
Δ=Δu
RCZ-1
2.204
5.398
32.424
RUZ-2
1.952
6.591
33.474
RUZ-3
1.518
6.059
19.872
RUZ-4
2.174
6.780
22.813
RUZ-5
1.989
7.128
24.529
RUZ-6
1.596
11.061
112.539
RUZ-7
2.149
13.031
22.316
Tab.5Accumulated energy dissipations of NC column and UHPC assembled column
Fig.10Stress-strain curve of UHPC
Fig.11Distribution diagram of column section stress
试件编号
MUt/(kN·m)
考虑UHPC抗拉
不考虑UHPC抗拉
MUkc/(kN·m)
MUkc/MUt
MUbc/(kN·m)
MUbc/MUt
RCZ-1
154.41
—
—
141.85
0.92
RUZ-2
161.63
155.74
0.96
136.12
0.84
RUZ-3
125.12
117.45
0.94
99.90
0.80
RUZ-4
168.90
155.74
0.92
136.12
0.81
RUZ-5
156.48
155.74
1.00
136.12
0.87
RUZ-6
167.42
155.74
0.93
136.12
0.81
RUZ-7
183.37
180.53
0.98
160.91
0.88
Tab.6Comparison with calculated and experimental values of column section compression bending bearing capacity
[1]
杨曌, 吕伟, 包亮 基于螺栓连接的新型钢筋混凝土框架装配式节点抗震性能研究[J]. 工业建筑, 2019, 49 (8): 93- 99 YANG Zhao, LV Wei, BAO Liang Experimental research on seismic behavior of new RC frame assembly joints based on bolted connection[J]. Industrial Construction, 2019, 49 (8): 93- 99
doi: 10.13204/j.gyjz201908016
[2]
薛伟辰, 杨新磊, 王蕴 现浇柱叠合梁框架节点抗震性能试验研究[J]. 建筑结构学报, 2008, 29 (6): 9- 17 XUE Wei-chen, YANG Xin-lei, WANG Yun Experimental study on seismic behavior of different type of frame connections with composite beams and cast-in-place columns[J]. Journal of Building Structures, 2008, 29 (6): 9- 17
doi: 10.3321/j.issn:1000-6869.2008.06.002
[3]
李忠献, 郝永昶, 张建宇 钢筋混凝土分体柱框架梁柱中节点抗震性能的研究[J]. 建筑结构学报, 2001, (4): 55- 60 LI Zhong-xian, HAO Yong-chang, ZHANG Jian-yu Study on seismic behavior of beam column joints in RC frame with split columns[J]. Journal of Building Structures, 2001, (4): 55- 60
doi: 10.3321/j.issn:1000-6869.2001.04.010
[4]
JAMES K, NEIL M H Performance of precast/prestressed concrete building structure during northridge earthquake[J]. PCI Journal, 1994, (2): 38- 55
[5]
吴刚, 冯德成 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39 (2): 1- 16 WU Gang, FENG De-cheng Research progress on fundamental performance of precast concrete frame beam-to-column connections[J]. Journal of Building Structures, 2018, 39 (2): 1- 16
doi: 10.14006/j.jzjgxb.2018.02.001
[6]
TULLINI N, MINGHINI F Grouted sleeve connections used in precast reinforced concrete construction: experimental investigation of a column-to-column joint[J]. Engineering Structures, 2016, 127 (15): 784- 803
[7]
HU J Y, HONG W K, PARK S C Experimental investigation of precast concrete based dry mechanical column–column joints for precast concrete frames[J]. Structural Design of Tall and Special Buildings, 2017, 26 (5): 1884- 2023
[8]
陈俊. 预制混凝土底层柱抗震性能试验研究与分析[D]. 长沙: 湖南大学, 2016. CHEN Jun. Experimental study and analysis of seismic performance of precast concrete bottom column [D]. Changsha: Hunan University, 2016.
[9]
郑清林, 王霓, 陶里, 等 套筒灌浆缺陷对装配式混凝土柱抗震性能影响的试验研究[J]. 土木工程学报, 2018, 51 (5): 75- 83 ZHENG Qing-lin, WANG Ni, TAO Li, et al Experimental study on effects of grout defects on seismic performance of assembled concrete columns[J]. Journal of Civil Engineering, 2018, 51 (5): 75- 83
doi: 10.15951/j.tmgcxb.2018.05.009
[10]
肖顺, 李向民, 许清风, 等. 套筒灌浆缺陷对预制混凝土柱抗震性能影响的试验研究[J]. 建筑结构学报, 2022, 43(5): 112-121. XIAO Shun, LI Xiang-min, XU Qing-feng, et al. Experimental study on effect of sleeve grouting defects on seismic behavior of precast concrete columns [J]. Journal of Building Structures, 2022, 43(5): 112-121.
[11]
HASSAN A M T, JONES S W, MAHMUD G H Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37: 874- 882
doi: 10.1016/j.conbuildmat.2012.04.030
[12]
ROSSI P Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites[J]. Cement and Concrete Composites, 2013, 37: 246- 248
doi: 10.1016/j.cemconcomp.2012.08.005
[13]
ELDIEB A S Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials and Design, 2009, 30 (10): 4286- 4292
doi: 10.1016/j.matdes.2009.04.024
[14]
贾方方. 钢筋与活性粉末混凝土黏结性能的试验研究[D]. 北京: 北京交通大学, 2013. JIA Fang-fang. Experimental study on bond properties of steel bar and reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2013.
[15]
韩方玉, 刘建忠, 刘加平, 等 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33 (Supple.1): 244- 248 HAN Fang-yu, LIU Jian-zhong, LIU Jia-ping, et al Study on anchorage behavior of steel bar in ultra-high performance concrete[J]. Material Review, 2019, 33 (Supple.1): 244- 248
[16]
马福栋, 邓明科, 孙宏哲, 等 变形钢筋/超高性能混凝土搭接黏结性能[J]. 复合材料学报, 2021, 38 (11): 3912- 3921 MA Fu-dong, DENG Ming-ke, SUN Hong-zhe, et al Bonding properties of deformed steel bar/ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38 (11): 3912- 3921
doi: 10.13801/j.cnki.fhclxb.20201229.006
[17]
李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. LI Li. Mechanical behavior and design method for reactive powder concrete beams [D]. Harbin: Harbin Institute of Technology, 2010.
徐洁. 柱端局部采用纤维增强混凝土柱抗震性能研究[D]. 西安: 西安建筑科技大学, 2014. XU Jie. Study on seismic behavior of the column with fiber-reinforced concrete in column end region [D]. Xi'an: Xi'an University of Architecture and Technology, 2014.
[20]
梁兴文, 康力, 车佳玲, 等 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30 (9): 243- 250 LIANG Xing-wen, KANG Li, CHE Jia-ling, et al Experiments and analyses of seismic behavior of columns with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics, 2013, 30 (9): 243- 250
doi: 10.6052/j.issn.1000-4750.2012.06.0394
[21]
彭飞, 方志 钢筋UHPC梁正截面抗弯承载力计算方法[J]. 土木工程学报, 2021, 54 (3): 86- 97 PENG Fei, FANG Zhi Calculation method of flexural capacity of normal section of reinforced UHPC beam[J]. Journal of Civil Engineering, 2021, 54 (3): 86- 97
doi: 10.15951/j.tmgcxb.2021.03.008
[22]
曾翔超, 余红发 碱镁混凝土大偏心受压柱的试验研究[J]. 哈尔滨工程大学学报, 2017, 38 (6): 852- 858 ZENG Xiang-chao, YU Hong-fa Study on large eccentric compression column of basic magnesium sulfate cement concrete[J]. Journal of Harbin Engineering University, 2017, 38 (6): 852- 858
doi: 10.11990/jheu.201603105