Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1090-1099    DOI: 10.3785/j.issn.1008-973X.2023.06.004
    
Experimental study on seismic performance of new earthquake-resilient semi-rigid joint
Zhi-an JIAO1,2(),Jian-peng WEI1,2,Yang GUO1,2,Liang-jun DAI1,2,Li-min TIAN3,*()
1. Anhui Province Key Laboratory of Green Building and Assembly Construction, Anhui Institute of Building Research & Design, Hefei 230031, China
2. Anhui Construction Engineering Group, Hefei 230022, China
3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Download: HTML     PDF(2456KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new type of semi-rigid joint with recoverable function was proposed, in order to realize the rapid recovery of building functions after earthquake. The new joints were mainly composed of T-shaped energy dissipation plates, prefabricated beams and columns with hinges, and group of high-strength bolts. Four specimens of the new joint and one comparison specimen with welding joints in the same size were tested by reciprocating load tests. The seismic performance of the new joint was investigated, and the influence of the energy dissipation zone parameters such as section area, length and section moment of inertia on the hysteretic performance was analyzed. Results show that the new joints have better carrying capacity, energy consumption capacity and ductility than welding joints. In the test, the inelastic deformation is mainly concentrated on the energy dissipation plate, and the main structure is basically intact. Replacing the T-shaped energy dissipation plate can quickly restore the structure function. Different length and moment of inertia of the energy dissipation zone show different damage characteristics and seismic performance. A simple calculation method of new joint design was proposed, the proposed method can effectively predict the mechanical performance and destruction characteristics of various types of new joints under reciprocating load. Compared the yield load and ultimate load calculated by using the proposed method with the test record, the maximum errors of the two were 2.5% and 12.8% respectively.



Key wordsprefabricated joint      earthquake resilient structure      seismic performance      reciprocating load test      theoretical analysis     
Received: 21 June 2022      Published: 30 June 2023
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(52178161,51608433);绿色建筑与装配式建造安徽省重点实验室资助课题(2021-JKYL-001);安徽建工集团资助课题(2021-19JF);2022年度省住房城乡建设科学技术计划项目资助课题(2022-YF164)
Corresponding Authors: Li-min TIAN     E-mail: Zhian_Jiao@163.com;tianlimin701@163.com
Cite this article:

Zhi-an JIAO,Jian-peng WEI,Yang GUO,Liang-jun DAI,Li-min TIAN. Experimental study on seismic performance of new earthquake-resilient semi-rigid joint. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1090-1099.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.004     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1090


新型可恢复功能半刚性节点抗震性能试验研究

为了实现建筑功能的震后快速恢复,提出新型可恢复功能半刚性节点. 新型节点主要由T形耗能板、带铰的预制梁柱和高强螺栓群组成. 对4个该新型节点试件及1个同尺寸的焊接节点对比试件进行往复加载试验,考察新型节点的抗震性能,分析耗能区截面面积、长度、截面惯性矩对新型节点滞回性能的影响. 结果表明:新型节点比焊接节点具备更好的承载能力、耗能能力和延性. 在试验中,非弹性变形主要集中在耗能板,主体结构基本无损伤,更换T形耗能板能够快速恢复结构功能. 不同耗能区长度、惯性矩表现出不同的破坏特征与抗震性能. 提出简单的新型节点设计计算方法,可以有效预测各类新型节点在往复荷载作用下的受力性能与破坏特征;对比采用所提方法计算与试验记录得出的屈服载荷、极限载荷,两者最大误差分别为2.5%、12.8%.


关键词: 装配式节点,  可恢复功能防震结构,  抗震性能,  往复加载试验,  理论分析 
Fig.1 Structural chart of new earthquake-resilient semi-rigid joint
Fig.2 Structure size diagram of joint specimens
试件 l/mm w/mm h/mm A/mm2 I/ mm4
HJ-1 200 70 45 1 200 275 517
HJ-2 200 80 30 1 200 114 192
HJ-3 120 70 45 1 200 275 517
HJ-4 200 100 60 1 680 602 743
Tab.1 Dimensions of T type plates on new joint specimens
取样位置 fy/MPa fu/MPa ?y/(10?6ε)
短梁翼缘 351 636 1 704
短梁腹板 346 506 1 680
长梁翼缘 376 555 1 825
长梁腹板 418 564 2 029
加劲肋 325 438 1 578
T形耗能板翼缘 267 431 1 335
T形耗能板腹板 276 432 1 380
Tab.2 Performance test results of steel materials
Fig.3 Test setup of reciprocating load tests
Fig.4 Curve of loading scheme for reciprocating load tests
Fig.5 Arrangement of measurement devices of joint specimens
试件 FyT / kN FuT / kN FT / F FB / FyB
截面1 截面2 截面4
HJ-1 325.8 517.8 3.62 0.54 1.01 0.99
HJ-2 325.8 517.8 3.71 0.52 0.99 0.96
HJ-3 325.8 517.8 3.62 0.54 1.01 0.99
HJ-4 456.1 724.9 3.58 0.76 1.44 1.40
Tab.3 Results of force analysis and calculation about new joint specimens (FT= FuT)
Fig.6 Deformation characteristics of welding joint specimen (WS)
Fig.7 Deformation characteristics of new joint specimens
Fig.8 Comparison diagram of hysteretic curves with different joint specimens
Fig.9 Load-displacement skeleton curves of joint specimens
试件 Δy/mm Fy/kN $\overline F $y/kN Δu/mm $\overline \varDelta $u/mm Fmax/kN $\overline F $max/kN μ
WS 24 119.6 126.1 64.7 68.7 143.3 150.6 2.9
?132.6 ?72.7 ?158.0
HJ-1 16 84.3 88.6 96.0 96.0 129.0 137.8 6
?93.0 ?96.0 ?146.6
HJ-2 16 81.2 85.8 81.2 84.0 114.3 124.0 5.3
?90.4 ?86.7 ?133.7
HJ-3 16 86.5 92.0 77.6 78.8 138.0 147.9 4.9
?97.6 ?80.0 ?157.8
HJ-4 24 124.3 130.6 96.0 96.0 166.6 179.5 4.0
?137.0 ?96.0 ?192.4
Tab.4 Bearing capacity and ductility coefficient of joint specimens
Fig.10 Stiffness reduction curves of joint specimens
Fig.11 Cumulative energy consumption curves of joint specimens
Fig.12 Curves of equivalent viscous damping coefficient
Fig.13 Hysteresis curves of two types of joint specimens at sensor No. 1
Fig.14 Displacement characteristics of two types of joint specimens
Fig.15 Strain curves of four sections for two types of new joints specimens
$\varDelta $/mm εs1/(10?6ε) εs2/(10?6ε) εs3/(10?6ε) εs4/(10?6ε)
HJ-1 HJ-4 HJ-1 HJ-4 HJ-1 HJ-4 HJ-1 HJ-4
16 566 712 942.2 486 1 925 1 176 445 505
24 698 897 1 615 615 5 590 3 465 508 655
96 907 2 563 2 150 2 164 55 024 43 792 1 450 1 861
Tab.5 Strain of four sections for two types of new joints specimens
试件 关键现象预测 试验现象 Fyc/kN Fuc/kN Fye/kN Fue/kN δly/% δlu/%
HJ-1 耗能优异,结构主体无损伤 耗能优异,结构主体基本无损伤 90.0 143.0 88.7 137.8 1.5 3.8
HJ-2 耗能能力较差 耗能能力较差且耗能板弯曲破坏 87.8 139.6 85.8 124.0 2.3 12.6
HJ-3 ? < 96 mm,
耗能板断裂
?= 80 mm,
耗能板断裂
90.0 143.0 92.1 147.9 2.2 3.3
HJ-4 主体结构损伤 梁三处截面进入
塑性
127.4 202.5 130.7 179.5 2.5 12.8
Tab.6 Comparison of theoretical and experimental results about new joint specimens
[1]   韩冬, 布欣, 王新武, 等 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报: 工学版, 2017, 51 (2): 287- 296
HAN Dong, BU Xing, WANG Xin-wu, et al Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 287- 296
[2]   冯帅克, 郭正兴, 倪路瑶, 等 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1464- 1472
FENG Shuai-ke, GUO Zheng-xing, NI Lu-yao, et al Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1464- 1472
[3]   吕西林, 陈云, 毛苑君 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报: 自然科学版, 2011, 39 (7): 941- 948
LV Xi-lin, CHEN Yun, MAO Yuan-jun New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University: Natural Science, 2011, 39 (7): 941- 948
[4]   吕西林, 武大洋, 周颖 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40 (2): 1- 15
LV Xi-lin, WU Da-yang, ZHOU Yin State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures, 2019, 40 (2): 1- 15
[5]   陈云, 陈超, 徐子凡, 等 装配式自复位摇摆钢框架抗震性能研究[J]. 建筑结构学报, 2021, 42 (12): 23- 34
CHEN Yun, CHEN Chao, XU Zi-fan, et al Seismic performance study on prefabricated self-centering rocking steel frame[J]. Journal of Building Structures, 2021, 42 (12): 23- 34
[6]   鲁亮, 李鸿, 刘霞, 等 梁端铰型受控摇摆式钢筋混凝土框架抗震性能振动台试验研究[J]. 建筑结构学报, 2016, 37 (3): 59- 66
LU Liang, LI Hong, LIU Xia, et al Shaking table test on seismic performance of controlled rocking reinforced concrete frame[J]. Journal of Building Structures, 2016, 37 (3): 59- 66
[7]   姜子钦, 杨晓峰, 张爱林, 等 可恢复功能装配式中柱节点耗能装置试验研究[J]. 建筑结构学报, 2020, 41 (1): 15- 23
JIANG Zi-qin, YANG Xiao-feng, ZHANG Ai-lin, et al Experimental study on energy consuming devices for earthquake-resilient prefabricated cross joints[J]. Journal of Building Structures, 2020, 41 (1): 15- 23
[8]   康婷, 许高娲, 欧进萍 承载-耗能铰节点装配式钢框架结构抗震弹塑性分析[J]. 地震工程与工程振动, 2018, 38 (6): 43- 51
KANG Ting, XU Gao-wa, OU Jin-ping Elasto-plastic analysis of prefabricated steel frame with bearing-energy dissipated joints against earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38 (6): 43- 51
[9]   郑莲琼, 颜桂云, 魏常贵, 等 钢质往复弯曲耗能铰滞回性能试验研究及理论分析[J]. 土木工程学报, 2020, 53 (12): 29- 43
ZHENG Lian-qiong, YAN Gui-yun, WEI Chang-gui, et al Experimental and numerical investigation of steel energy-dissipating hinge under cyclic loading[J]. China Civil Engineering Journal, 2020, 53 (12): 29- 43
[10]   颜桂云, 袁宇琴, 郑莲琼, 等 装配式钢质塑性可控铰抗震性能试验研究[J]. 建筑结构学报, 2022, 43 (1): 86- 94
YAN Gui-yun, YUAN Yu-qin, ZHENG Lian-qiong, et al Experimental study on seismic performance of plastic controllable prefabricated steel hinges[J]. Journal of Building Structures, 2022, 43 (1): 86- 94
[11]   LI Z H, QI Y H, TENG J Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading[J]. Engineering Structures, 2020, 209: 110217
doi: 10.1016/j.engstruct.2020.110217
[12]   PENG H, OU J P, MAHIN S Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106149
doi: 10.1016/j.soildyn.2020.106149
[13]   YE J F, YAN G Y, LIU R Y, et al Hysteretic behavior of replaceable steel plate damper for prefabricated joint with earthquake resilience[J]. Journal of Building Engineering, 2022, 46: 103714
doi: 10.1016/j.jobe.2021.103714
[14]   LI C Y, WU J, ZHANG J Y, et al Experimental study on seismic performance of precast concrete frame with replaceable energy-dissipating connectors[J]. Engineering Structures, 2021, 231: 111719
doi: 10.1016/j.engstruct.2020.111719
[15]   HUANG H, YUAN Y J, ZHANG W, et al Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint[J]. Engineering Structures, 2021, 245: 112848
doi: 10.1016/j.engstruct.2021.112848
[16]   马哲昊, 张纪刚, 梁海志, 等 装配式人工消能塑性铰节点低周往复试验数值模拟研究[J]. 土木工程学报, 2020, 53 (Suppl.2): 162- 168
MA Zhe-hao, ZHANG Ji-gang, LIANG Hai-zhi, et al Numerical research on prefabricated frame joint based on artificial dissipative plastic hinge under low-reversed loading[J]. China Civil Engineering Journal, 2020, 53 (Suppl.2): 162- 168
[17]   European Committee for Standardization. Eurocode3: design of steel structures: part1.8: design of joints [EB/OL]. [2022-03-23]. http://www.doc88.com/p-5304811387427.html.
[18]   北京钢铁设计研究总院. 钢结构设计规范: GB 50017—2003 [S]. 北京: 中国计划出版社, 2003: 19-71.
[19]   中国钢铁工业协会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2010: 1-14.
[20]   AISC Committee. Seismic provisions for structural steel buildings: ANSI/AISC 341-10 [S]. Chicago: American Institute of Steel Construction, 2010: 84-126.
[21]   YANG L, WANG M, SUN Y, et al Experimental and numerical study of LY315 steel moment connection with bolted cover plates[J]. Thin-Walled Structures, 2021, 159: 107277
doi: 10.1016/j.tws.2020.107277
[22]   TIAN L M, WEI J P, HAO J P Optimisation of long-span single-layer spatial grid structures to resist progressive collapse[J]. Engineering Structures, 2019, 188: 394- 405
doi: 10.1016/j.engstruct.2019.03.025
[23]   WEI J P, TIAN L M, HAO J P, et al Novel principle for improving performance of steel frame structures in column-loss scenario[J]. Journal of Constructional Steel Research, 2019, 163: 105768
doi: 10.1016/j.jcsr.2019.105768
[24]   中国建筑科学研究院. 建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015: 10-18.
[25]   冯鹏, 强翰霖, 叶列平 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34 (3): 36- 46
FENG Peng, QIANG Han-ling, YE Lie-ping Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34 (3): 36- 46
doi: 10.6052/j.issn.1000-4750.2016.03.0192
[26]   克拉夫, 彭津. 结构动力学: 第二版[M]. 王光远, 译. 北京: 高等教育出版社, 2006: 42-46.
[27]   覃健桂, 潘建荣, 王湛, 等 考虑空间构造的T型件连接节点抗震性能研究[J]. 中南大学学报: 自然科学版, 2021, 52 (11): 3958- 3969
QIN Jian-gui, PAN Jian-rong, WANG Zhan, et al Study on seismic behavior of T-stub connection considering spatial structure[J]. Journal of Central South University: Science and Technology, 2021, 52 (11): 3958- 3969
[1] Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.
[2] Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.
[3] Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.
[4] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[5] Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.
[6] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[7] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[8] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[9] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[10] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.