Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1328-1335, 1352    DOI: 10.3785/j.issn.1008-973X.2022.07.008
    
Shear characteristics of interface based on subloading-friction model
Tao GONG1(),Kai-fu LIU2,Xin-yu XIE1,3,*(),Chun-tai XU1,Yang LOU1,Ling-wei ZHENG4
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
3. Institute of Wenzhou, Zhejiang University, Wenzhou 325035, China
4. School of Civil Engineering and Architecture, Ningbo Tech University, Ningbo 315100, China
Download: HTML     PDF(1547KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A secondary development of the subloading-friction model that can describe the strain softening phenomenon of contact surface was realized based on subroutine FRIC provided by ABAQUS by using explicit integration algorithm in order to reflect the strain softening characteristics of soil-structure surface and the effect of shear rate on the mechanical properties of soil-structure interface. The developed model was used to simulate the direct shear tests of soil-structure interface, and the evolution process of the stress on the contact surface during direct shear test was analyzed. The numerical calculation results indicate that the subloading-friction model can simulate the strain softening phenomenon of soil-structure interface well, and simulate the decrease of residual shear stress of dense quasi-sands with the increase of shear rate in the direct shear test. The shear stress on the contact surface of subloading-friction model increases at first and then decreases with the development of shear displacement, and the stress exertion level of the contact surface reaches the maximum successively from one side away from the loaded end to the other side. Results show that the subloading-friction model can be used to simulate the strain softening characteristics and rate dependence of the mechanical properties of soil-structure interface.



Key wordssoil-structure interface      direct shear test      strain softening      subloading-friction model     
Received: 07 July 2021      Published: 26 July 2022
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(51878619, 52078465)
Corresponding Authors: Xin-yu XIE     E-mail: 11812029@zju.edu.cn;xiexinyu@zju.edu.cn
Cite this article:

Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.008     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1328


基于次加载面摩擦模型的接触面剪切特性研究

为了反映土与结构接触面的应变软化特性以及剪切速率对土与结构接触面力学特性的影响,基于ABAQUS软件提供的FRIC子程序,采用显式积分算法,对能够表现接触面上应变软化的次加载面摩擦模型进行二次开发. 利用该模型模拟土与结构接触面的直剪试验,研究直剪试验过程中次加载面摩擦模型接触面上的应力演变过程. 研究结果表明,利用次加载面摩擦本构模型,能够较好地模拟土-结构接触面直剪试验中的应变软化和密实状态的类砂土残余切应力随剪切速率的增大而下降的现象. 在剪切位移的发展过程中,次加载面摩擦模型接触面上的切应力先增加后减小,接触面远离加载端一侧到另一侧的应力发挥水平先后达到最大值. 该研究表明,次加载面摩擦模型可以用于土与结构接触面的应变软化特性和速率相关性的模拟.


关键词: 土-结构接触面,  直剪试验,  应变软化,  次加载面摩擦模型 
Fig.1 Flow chart of FRIC subroutine
参数 数值 参数 数值
$\;{\mu _{\rm{s}}}$ 1.05 $\kappa /{{\text{m}}^{ - 1}}$ 215
$\;{\mu _{\rm{k}}}$ 0.57 $\xi /{{\text{s}}^{ - 1}}$ 0.00004
$ {\alpha _{\rm{t}}}/\left( {{{\text{kN}}} \cdot{{{\text{m}}^{-3}}}}\right) $ 2×106 $\tilde u/{{\text{m}}^{ - 1}}$ 8500
${\alpha _{\rm{n} } }/\left( { {\text{kN} }\cdot{ {\text{m} }^{-3} } } \right)$ 2×106 ? ?
Tab.1 Model parameter of numerical example 1
Fig.2 Three-dimensional model for direct shear test of interfaces
Fig.3 Comparison between simulated curves and experimental results of shear stress-displacement relationship
Fig.4 Three-dimensional model for direct shear test of interface
参数 数值 参数 数值
$\;{\mu _{\rm{s}}}$ 0.74 $\kappa /{{\text{m}}^{ - 1}}$ 1500
$\;{\mu _{\rm{k}}}$ 0.48 $\xi /{{\text{s}}^{ - 1}}$ 0.005
$ {\alpha _{\rm{t}}}/\left( {{{\text{kN}}} \cdot{{{\text{m}}^{-3}}}}\right) $ 105 $\tilde u/{{\text{m}}^{ - 1}}$ 15000
${\alpha _{\rm{n}}}/\left( {{\text{kN}}\cdot{{\text{m}}^{-3}}} \right)$ 2×106 ? ?
Tab.2 Model parameter of numerical example 2
Fig.5 Comparison between simulated curves and experimental results of shear stress-displacement relationship under different shear rates
Fig.6 Distribution of stress on contact surface at 10 mm shear displacement
Fig.7 Development curve of stress on contact surface with shear displacement
Fig.8 Distribution of normal sliding-yield ratio on contact surface at different shear displacement
[1]   齐良锋, 简浩, 唐丽云 引入接触单元模拟桩土共同作用[J]. 岩土力学, 2005, 26 (1): 127- 130
QI Liang-feng, JIAN Hao, TANG Li-yun The computing model of adopting contact element to simulate the pile-soil’s reciprocity[J]. Rock and Soil Mechanics, 2005, 26 (1): 127- 130
doi: 10.3969/j.issn.1000-7598.2005.01.027
[2]   LOUKIDIS D, SALGADO R Analysis of the shaft resistance of non-displacement piles in sand[J]. Géotechnique, 2008, 58 (4): 283- 296
[3]   LASHKARI A Prediction of the shaft resistance of nondisplacement piles in sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37 (8): 904- 931
doi: 10.1002/nag.1129
[4]   YOSHIMI Y, KISHIDA T A ring torsion apparatus for evaluating friction between soil and metal surfaces[J]. Geotechnical Testing Journal, 1981, 4 (4): 145- 152
doi: 10.1520/GTJ10783J
[5]   YIN Z Z, ZHU H, XU G H A study of deformation in the interface between soil and concrete[J]. Computers and Geotechnics, 1995, 17 (1): 75- 92
doi: 10.1016/0266-352X(95)91303-L
[6]   胡黎明, 濮家骝 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001, 23 (4): 431- 435
HU Li-ming, PU Jia-liu Experimental study on mechanical characteristics of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (4): 431- 435
doi: 10.3321/j.issn:1000-4548.2001.04.010
[7]   李登华, 郦能惠 土与混凝土结构接触面力学特性试验研究[J]. 水电能源科学, 2009, 27 (5): 114- 118
LI Deng-hua, LI Neng-hui Experimental study on mechanical behavior of interface between soil and concrete slab[J]. Water Resources and Power, 2009, 27 (5): 114- 118
doi: 10.3969/j.issn.1000-7709.2009.05.035
[8]   钟世英. 模拟月壤力学特性及软着陆足垫动力响应研究[D]. 杭州: 浙江大学, 2012.
ZHONG Shi-ying. Study on mechanical behaviors of lunar soil simulant and footpad dynamic response in soft landing [D]. Hangzhou: Zhejiang University, 2012.
[9]   夏红春, 周国庆 土-结构接触面剪切力学特性及其影响因素试验[J]. 中国矿业大学学报, 2010, 39 (6): 831- 836
XIA Hong-chun, ZHOU Guo-qing Experimental study of the shear mechanical characteristics at a soil-structure interface and the factors affecting them[J]. Journal of China University of Mining and Technology, 2010, 39 (6): 831- 836
[10]   刘希亮, 罗静 高应力下接触面抗剪特性影响因素分析[J]. 山东大学学报:工学版, 2003, 33 (4): 461- 466
LIU Xi-liang, LUO Jing The affecting factors analysis on the shearing characteristic of the interface under high pressure[J]. Journal of Shandong University: Engineering Science, 2003, 33 (4): 461- 466
[11]   张冬霁, 卢廷浩 一种土与结构接触面模型的建立及其应用[J]. 岩土工程学报, 1998, 20 (6): 65- 69
ZHANG Dong-ji, LU Ting-hao Establishment and application of a interface model between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (6): 65- 69
[12]   CLOUGH G W, DUNCAN J M Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97 (12): 1657- 1672
doi: 10.1061/JSFEAQ.0001713
[13]   BOULON M, GHIONNA V N, MORTARA G A strain-hardening elastoplastic model for sand-structure interface under monotonic and cyclic loading[J]. Mathematical and Computer Modelling, 2003, 37 (5): 623- 630
[14]   HU L M, PU J L Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (8): 851- 860
doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)
[15]   张嘎, 张建民 粗粒土与结构接触面统一本构模型及试验验证[J]. 岩土工程学报, 2005, 27 (10): 1175- 1179
ZHANG Ga, ZHANG Jian-min Unified modeling of soil-structure interface and its test confirmation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (10): 1175- 1179
doi: 10.3321/j.issn:1000-4548.2005.10.013
[16]   凌道盛, 韩超, 陈云敏, 等 土结接触面黏聚区域模型及渐进累积破坏分析[J]. 岩土工程学报, 2011, 33 (9): 1405- 1411
LING Dao-sheng, HAN Chao, CHEN Yun-min, et al Interfacial cohesive zone model and progressive failure of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (9): 1405- 1411
[17]   路德春, 罗磊, 王欣, 等 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34 (7): 41- 50
LU De-chun, LUO Lei, WANG Xin, et al Softening/hardening constitutive model for soil-structure interface and numerical implementation[J]. Engineering Mechanics, 2017, 34 (7): 41- 50
doi: 10.6052/j.issn.1000-4750.2016.01.0072
[18]   胡黎明, 马杰, 张丙印 直剪试验中接触面渐进破坏的数值模拟[J]. 清华大学学报:自然科学版, 2008, 48 (6): 943- 946
HU Li-ming, MA Jie, ZHANG Bing-yin Numerical simulation of interface failure during direct shear tests[J]. Journal of Tsinghua University: Science and Technology, 2008, 48 (6): 943- 946
[19]   夏红春, 李永松, 周国庆 砂-结构接触面直接剪切的物理试验与数值模拟[J]. 中国矿业大学学报, 2015, 44 (5): 808- 816
XIA Hong-chun, LI Yong-song, ZHOU Guo-qing Physical experiment and numerical simulation of sand-structure interface’s direct shear[J]. Journal of China University of Mining and Technology, 2015, 44 (5): 808- 816
[20]   殷殷, 张丙印, 袁会娜, 等 接触面直剪试验及数值模拟分析[J]. 水力发电学报, 2018, 37 (6): 84- 92
YIN Yin, ZHANG Bing-yin, YUAN Hui-na, et al Experimental and numerical study on interface direct shear tests[J]. Journal of Hydroelectric Engineering, 2018, 37 (6): 84- 92
doi: 10.11660/slfdxb.20180609
[21]   郑立宁, 康景文, 谢强, 等 含应变软化本构关系的岩-土接触元直剪试验数值模拟[J]. 岩土力学, 2014, 35 (Supple.2): 613- 618
ZHENG Li-ning, KANG Jing-wen, XIE Qiang, et al Numerical simulation for direct shear tests with strain softening constitutive contact elements[J]. Rock and Soil Mechanics, 2014, 35 (Supple.2): 613- 618
[22]   HASHIGUCHI K, OZAKI S Constitutive equation for friction with transition from static to kinetic friction and recovery of static friction[J]. International Journal of Plasticity, 2008, 24 (11): 2102- 2124
doi: 10.1016/j.ijplas.2008.03.004
[23]   HASHIGUCHI K. Foundations of elastoplasticity: subloading surface model [M]. 3rd ed. Cham: Springer, 2017.
[1] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[2] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of fresh municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1962-1967.