|
|
Analysis and simulation of magnetic field for robot tactile perception |
Mei-jiang GUI1,2( ),Xiao-hu ZHOU1( ),Xiao-liang XIE1,Shi-qi LIU1,Hao LI1,2,Jin-li WANG3,Zeng-guang HOU1,2,*( ) |
1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China 3. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China |
|
|
Abstract A sensing device with a convex structure was designed using elastic rubber and Hall devices, in order to explore the magnetic field calculation method suitable for the flexible tactile sensing device. The magnetic field generated by the deformed device was then calculated based on the magnetic equation of the Halbach cylinder. To further verify the proposed calculation method, finite element simulation models of the sensing device under different deformations were constructed and solved based on the COMSOL Multiphysics platform. Comparing the calculation results with the simulation results shows that the proposed calculation method has great applicability under different deformations. Moreover, data fitting demonstrates that the simulation value gradually approaches the theoretical value with the continuous refinement of the simulation network. The minimum error was 3.18%, proving the high consistency between the simulated value and the theoretical value.
|
Received: 21 March 2022
Published: 30 June 2022
|
|
Fund: 国家自然科学基金资助项目(62003343, 62073325, U20A20224, U1913210);北京市自然科学基金资助项目(M22008);中国科学院青年创新促进会会员资助项目(2020140) |
Corresponding Authors:
Zeng-guang HOU
E-mail: guimeijiang2019@ia.ac.cn;xiaohu.zhou@ia.ac.cn;zengguang.hou@ia.ac.cn
|
面向机器人触力觉感知的磁场解析与仿真
为了探究适用于柔性机器人触力觉感知装置的磁场计算方法,利用弹性橡胶与霍尔器件设计带有凸起结构的感知装置. 利用环式Halbach阵列的磁场方程,对形变后装置的磁场进行计算. 为了验证所提出的计算方法,基于COMSOL Multiphysics平台构建并求解不同形变下感知装置的有限元仿真模型. 通过对比理论计算结果与模型仿真结果,验证了所提出的计算方法在不同形变下均有较好的适用性. 进一步的数据拟合表明,随着仿真网络的不断细化,仿真值逐渐逼近理论值,最小误差为3.18%,证明二者具有较高的一致性.
关键词:
触力觉感知,
弹性橡胶,
霍尔器件,
环式Halbach阵列,
解析计算,
有限元仿真
|
|
[1] |
ZHOU X, XIE X, LIU S, et al Surgical skill assessment based on dynamic warping manipulations[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4 (1): 50- 61
doi: 10.1109/TMRB.2022.3141313
|
|
|
[2] |
CHEN D, SONG A, TIAN L, et al MH-Pen: a pen-type multi-mode haptic interface for touch screens interaction[J]. IEEE Transactions on Haptics, 2018, 11 (4): 555- 567
|
|
|
[3] |
TEE B, CHORTOS A, BERNDT A, et al A skin-inspired organic digital mechanoreceptor[J]. Science, 2015, 350 (6258): 313- 316
doi: 10.1126/science.aaa9306
|
|
|
[4] |
KIM Y, CHORTOS A, XU W, et al A bioinspired flexible organic artificial afferent nerve[J]. Science, 2018, 360 (6392): 998- 1003
doi: 10.1126/science.aao0098
|
|
|
[5] |
ZHOU X, XIE X, FENG Z, et al A multilayer and multimodal-fusion architecture for simultaneous recog-nition of endovascular manipulations and assessment of technical skills[J]. IEEE Transactions on Cybernetics, 2020, 50 (4): 2565- 2577
|
|
|
[6] |
宋爱国 机器人触觉传感器发展概述[J]. 测控技术, 2020, 39 (5): 2- 8 SONG Ai-guo Development of robot tactile sensor[J]. Measurement and Control Technology, 2020, 39 (5): 2- 8
|
|
|
[7] |
宋爱国, 田磊, 倪得晶, 等 多模态力触觉交互技术及应用[J]. 中国科学: 信息科学, 2017, 47 (9): 1183- 1197 SONG Ai-guo, TIAN Lei, NI De-jing, et al Multi-mode haptic interaction technique and its application[J]. Scientia Sinica: Informationis, 2017, 47 (9): 1183- 1197
doi: 10.1360/N112017-00081
|
|
|
[8] |
GUI M, ZHOU X, XIE X, et al Design and experiments of a novel Halbach-cylinder-based magnetic skin: a preliminary study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 9502611
|
|
|
[9] |
YAN Y, HU Z, YANG Z, et al Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J]. Science Robotics, 2021, 6 (51): eabc8801
doi: 10.1126/scirobotics.abc8801
|
|
|
[10] |
WANG H, DE BOER G, KOW J, et al Design methodology for magnetic field-based soft tri-axis tactile sensors[J]. Sensors, 2016, 16 (9): 1356
doi: 10.3390/s16091356
|
|
|
[11] |
TOMO T P, REGOLI M, SCHMITZ A, et al A new silicone structure for uSkin: a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2584- 2591
doi: 10.1109/LRA.2018.2812915
|
|
|
[12] |
ZHOU X, XIE X, LIU S, et al Learning skill characteristics from manipulations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1- 15
|
|
|
[13] |
XU L, GU H, CHANG M, et al Magnetic target linear location method using two-point gradient full tensor[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6007808
|
|
|
[14] |
CHEN Y, ZHANG W, BIRD J Z, et al A 3-D analytic-based model of a null-flux Halbach array electrodynamic suspension device[J]. IEEE Transactions on Magnetics, 2015, 51 (11): 8300405
|
|
|
[15] |
LADGHEM-CHIKOUCHE B, BOUGHRARA K, DUBAS F, et al 2-D semi-analytical magnetic field calculation for flat permanent-magnet linear machines using exact subdomain technique[J]. IEEE Transactions on Magnetics, 2021, 57 (6): 8106211
|
|
|
[16] |
TANG W, XIAO L, XIA D, et al 2-D and 3-D analytical calculation of the magnetic field and levitation force between two Halbach permanent magnet arrays[J]. IEEE Transactions on Magnetics, 2021, 57 (4): 8300208
|
|
|
[17] |
DU Y, ZHAO J, XIAO F, et al Partitioned stator hybrid excitation doubly salient machine with slot Halbach PM arrays[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (4): 3187- 3196
doi: 10.1109/TVT.2021.3065670
|
|
|
[18] |
HALBACH K Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26 (3): 3882- 3884
doi: 10.1109/TNS.1979.4330638
|
|
|
[19] |
HALBACH K Design of permanent multipole magnets with oriented rare earth cobalt material[J]. Nuclear Instruments and Methods, 1980, 169 (1): 1- 10
doi: 10.1016/0029-554X(80)90094-4
|
|
|
[20] |
杨海波, 刘枫, 李凡珠, 等 圆柱形橡胶试样压缩变形有限元分析的超弹性本构方程对比研究[J]. 橡胶工业, 2018, 65 (10): 1085- 1093 YANG Hai-bo, LIU Feng, LI Fan-zhu, et al Finite element analysis of compressive deformation for cylindrical rubber components based on hyperelastic constitutive models[J]. China Rubber Industry, 2018, 65 (10): 1085- 1093
doi: 10.3969/j.issn.1000-890X.2018.10.001
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|