Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1573-1584    DOI: 10.3785/j.issn.1008-973X.2023.08.010
    
Simulation on pullout behavior of mechanical anchorage reinforcing bars based on refined rib-scale modeling
Ling-mao WANG1(),Wei-jian ZHAO1,2,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(6006KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To reveal the combining mechanism of mechanical anchorage and bond, and to reduce the anchorage size and length, a refined rib-scale modeling approach was proposed based on the fact that the bond of deformed bars mainly comes from the mechanical interaction. Based on the finite element (FE) software DIANA 10.4, numerical simulations of three kinds of reinforcement pullout tests, where mechanical anchorage worked alone, bond worked alone and the two worked together, were carried out, respectively. Results show that the bond mechanism dominates the failure of hooked bar, which is caused by the shear failure of concrete keys between reinforcement ribs. The mechanical anchorage is controlled by local bearing mechanism, where the concrete beneath the anchor plate is under triaxial compression and the local compressive stress is more than three times of the uniaxial compressive strength. When mechanical anchorage and bond coexist, due to the position relationship between the reinforcement and anchor head, the bond plays a major role at the initial stage of loading, and with the increasing applied load, stress redistribution will occur in the anchorage zone where the mechanical anchorage and bond work together at the later stage. The load distribution ratio is mainly depended on the bond length and load level. Without assuming the bond-slip relationship, the macro-mechanical response and microscopic working mechanism of anchored bars can be well reflected by the rib-scale model.



Key wordsmechanical anchorage      bond      refined rib-scale model      finite element simulation      pullout test     
Received: 23 August 2022      Published: 31 August 2023
CLC:  TU 317.1  
Fund:  国家自然科学基金资助项目(51879230)
Corresponding Authors: Wei-jian ZHAO     E-mail: 22012275@zju.edu.cn;zhaoweijian@zju.edu.cn
Cite this article:

Ling-mao WANG,Wei-jian ZHAO. Simulation on pullout behavior of mechanical anchorage reinforcing bars based on refined rib-scale modeling. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1573-1584.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.010     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1573


基于肋尺度精细化建模的机械锚固钢筋拉拔性能模拟

为了揭示钢筋的机械锚固与黏结锚固共同工作的机理,减小锚具大小和锚固长度,基于变形钢筋的黏结力主要来自机械咬合作用,提出一种肋尺度精细化建模方法. 采用DIANA 10.4有限元(FE)软件分别对机械锚固、黏结锚固以及两者共同工作的3种钢筋拔出试验进行数值仿真分析. 结果表明:弯钩基本属于黏结锚固机制,钢筋肋间混凝土齿键的剪切破坏导致黏结失效;机械锚固为局部承压机制,锚固板下混凝土处于三轴受压状态,局部压应力超过单轴抗压强度3倍以上. 当机械锚固和黏结段共存时,由于钢筋和锚头的位置关系,锚固区将发生加载初期以黏结锚固为主到加载后期两者共同工作的应力重分布,荷载分担比例主要取决于黏结段长度和荷载水平. 在无须假定黏结滑移关系的情况下,肋尺度模型能够较好地反映锚固钢筋的宏观力学响应和细观工作机理.


关键词: 机械锚固,  黏结,  肋尺度精细化模型,  有限元模拟,  拔出试验 
Fig.1 Headed bar by friction welding
Fig.2 Geometric dimensions of pullout specimen of headed bar
工况 锚固板 钢筋
形状 d/mm t/mm D/mm
1 圆形 65 19 32
2 圆形 70 22 32
3 圆形 70 26 32
Tab.1 Detailed parameters of pullout specimens of headed bars       
工况 E/GPa ν fyfyk)/MPa fufuk)/MPa
1 191 0.3 384(345) 605(490)
2 191 0.3 431(390) 653(560)
3 191 0.3 529(490) 714(620)
Tab.2 Material properties of reinforcements (group A)
Fig.3 Loading setup of pullout test of headed bar
Fig.4 Geometric dimensions of pullout specimen of U-shape hooked bar
Fig.5 Cold extruded casing reinforcement
Fig.6 Geometric dimensions of pullout specimen of cold extruded casing reinforcement
Fig.7 FE model of pullout test of headed bar (group A)
Fig.8 Geometric configuration of hooked reinforcement ribs
Fig.9 Schematic view of connection properties at concrete-bar surface
Fig.10 FE model of pullout test of hooked bar (group B)
Fig.11 FE model of pullout test of cold extruded casing reinforcement (group C- without bond)
Fig.12 FE model of pullout test of cold extruded casing reinforcement (group C- with bond)
分组 工况 Ec/GPa ν fcm/MPa fctm/MPa Gf/(N·mm?1)
A组 1 29.4 0.2 32.4 2.52 0.137
2 29.1 0.2 32.1 2.50 0.137
3 30.1 0.2 33.2 2.58 0.137
B组 ? 31.8 0.2 35.0 2.70 0.138
C组 ? 41.9 0.2 46.1 3.40 0.145
Tab.3 Material properties of concrete
Fig.13 Reinforcement stress-displacement curves (group A)
Fig.14 Principal compressive stress of concrete (group A)
Fig.15 Deformation of concrete (group A)
Fig.16 Mises stress of headed bars (group A)
Fig.17 Reinforcement stress-displacement curves (group B)
Fig.18 Principal tensile strain of concrete in bond zone (group B)
Fig.19 Principal compressive strain of concrete (group B)
Fig.20 Reinforcement stress-displacement curves (group C)
Fig.21 Reinforcement stress-strain curves (group C-case 2: with bond)
Fig.22 Axial strain distribution of reinforcement (group C-case 2: with bond)
Fig.23 Evolution process of load distribution ratio in anchorage zone
Fig.24 Principal tensile strain of concrete (group C)
[1]   徐有邻, 王晓锋. 混凝土结构中钢筋的锚固[EB/OL]. [2022-07-01]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7ZCYsl4RS_3iNa5MITX9qmhtplfvphGV8jGrixBsxqUphVfsEGp-LQizFy3XsISVy&uniplatform=NZKPT.
[2]   汪洪, 徐有邻, 史志华 钢筋机械锚固性能的试验研究[J]. 工业建筑, 1991, (11): 36- 40
WANG Hong, XU You-lin, SHI Zhi-hua Experimental research mechanical anchorage properties of bars in concrete[J]. Industrial Construction, 1991, (11): 36- 40
doi: 10.13204/j.gyjz1991.11.007
[3]   THOMPSON M K, JIRSA J O, BREEN J E, et al. Anchorage behavior of headed reinforcement: literature review: FHWA/TX-0-1855-1[R]. Texas: Center for Transportation Research, 2002.
[4]   VELLA J P, VOLLUM R L, JACKSON A Flexural behaviour of headed bar connections between precast concrete panels[J]. Construction and Building Materials, 2017, 154: 236- 250
doi: 10.1016/j.conbuildmat.2017.07.146
[5]   TARABIA A M, MAHMOUD Z I, SHOUKRY M S, et al Performance of R. C. slabs with lap splices using headed bars[J]. Alexandria Engineering Journal, 2016, 55 (3): 2729- 2740
doi: 10.1016/j.aej.2016.05.018
[6]   三桶達夫, 趙唯堅, 谷村幸裕, 等. プレート定着型横方向鉄筋Head-bar技術の高度化に関する研究[EB/OL]. [2022-07-01]. https://data.jci-net.or.jp/data_pdf/26/026-01-2180.pdf.
[7]   李智斌, 吴广斌, 刘永颐 带锚固板钢筋的机械锚固性能试验及其最新研究成果[J]. 建筑科学, 2007, 23 (11): 38- 40
LI Zhi-bin, WU Guang-bin, LIU Yong-yi Experiment in anchorage behavior of headed reinforcement and its latest research results[J]. Building Science, 2007, 23 (11): 38- 40
doi: 10.3969/j.issn.1002-8528.2007.11.010
[8]   畑明仁, 大宮正弘, 山本平, 等. 生産性向上に寄与できる機械式鉄筋定着工法の適用拡大と性能評価[EB/OL]. [2022-07-01]. https://www.jstage.jst.go.jp/article/coj/55/10/55_874/_pdf.
[9]   李智斌. 带锚固板钢筋机械锚固性能的试验研究[D]. 天津: 天津大学, 2005.
LI Zhi-bin. Experiment study in anchorage behavior of headed reinforcement[D]. Tianjin: Tianjin University, 2005.
[10]   郑文忠, 苗天鸣, 王识宇, 等 锚固力在钢筋黏结和端板承压间的分配规律[J]. 哈尔滨工业大学学报, 2018, 50 (6): 152- 160
ZHENG Wen-zhong, MIAO Tian-ming, WANG Shi-yu, et al Distribution regulation of the reinforcement force between bond and headed bars[J]. Journal of Harbin Institute of Technology, 2018, 50 (6): 152- 160
doi: 10.11918/j.issn.0367-6234.201710053
[11]   郑文忠, 苗天鸣, 王识宇, 等 带锚固板高强热轧钢筋与混凝土黏结锚固性能试验研究[J]. 建筑结构学报, 2018, 39 (4): 119- 129
ZHENG Wen-zhong, MIAO Tian-ming, WANG Shi-yu, et al A study on anchoring behavior between high strength hot-rolled reinforcement with headed bars and concrete[J]. Journal of Building Structures, 2018, 39 (4): 119- 129
doi: 10.14006/j.jzjgxb.2018.04.014
[12]   江见鲸. 钢筋混凝土结构非线性有限元分析[M]. 西安: 陕西科学技术出版社, 1994.
[13]   陈锡栋, 杨婕, 赵晓栋, 等 有限元法的发展现状及应用[J]. 中国制造业信息化, 2010, 39 (11): 6- 8+12
CHEN Xi-dong, YANG Jie, ZHAO Xiao-dong, et al Development and application of finite element method[J]. Manufacture Information Engineering of China, 2010, 39 (11): 6- 8+12
[14]   COX J V, HERRMANN L R Development of a plasticity bond model for steel reinforcement[J]. Mechanics of Cohesive-Frictional Materials, 1998, 3 (2): 155- 180
doi: 10.1002/(SICI)1099-1484(199804)3:2<155::AID-CFM45>3.0.CO;2-S
[15]   MICHOU A, HILAIREA A, BENBOUDJEMA F, et al Reinforcement-concrete bond behavior: experimentation in drying conditions and meso-scale modeling[J]. Engineering Structures, 2015, 101: 570- 582
doi: 10.1016/j.engstruct.2015.07.028
[16]   ARAGÃO ALMEIDA JR S, GUNER S. A hybrid methodology using finite elements and neural networks for the analysis of adhesive anchors exposed to hurricanes and adverse environments[J]. Engineering Structures, 2020, 212: 1–9.
[17]   JIANG T, WU Z, HUANG L, et al Three-dimensional nonlinear finite element modeling for bond performance of ribbed steel bars in concrete under lateral tensions[J]. International Journal of Civil Engineering, 2020, 18 (5): 595- 617
doi: 10.1007/s40999-019-00488-1
[18]   SEOK S, HAIKAL G, RAMIREZ J A, et al High-resolution finite element modeling for bond in high-strength concrete beam[J]. Engineering Structures, 2018, 173: 918- 932
doi: 10.1016/j.engstruct.2018.06.068
[19]   LAGIER F, MASSICOTTE B, CHARRON J P 3D nonlinear finite-element modeling of lap splices in UHPFRC[J]. Journal of Structural Engineering, 2016, 142 (11): 1- 14
[20]   畑明仁, 趙唯堅, 武田均, 等. 機械式定着鉄筋の引抜き試験の再現解析[EB/OL]. [2022-07-01]. http://library.jsce.or.jp/jsce/open/00035/2016/71-05/71-05-0654.pdf.
[21]   土木研究センター. 土木系·技術審査証明報告書第1104号「Head-bar」[R]. 東京: 土木研究センター, 1999.
[22]   土木研究センター. 建設技術審査証明報告書第0408号「Head-bar」[R]. 東京: 土木研究センター, 2015.
[23]   原健悟, 二井谷教治, 照井満, 等. エポキシ樹脂塗装鉄筋による機械式定着を併用したプレキャスト床版の重ね継手[EB/OL]. [2022-07-01]. https://jpci.or.jp/dddd/SIMPO_ron/20/20-4-7.pdf.
[24]   DIANA FEA BV. Diana documentation release 10.4[EB/OL]. [2020-07-16]. https://dianafea.com/diana-manuals/.
[25]   新日本製鐵株式会社. 建設用資材ハンドブック[Z]. 東京: 新日本製鐵株式会社, 2010.
[26]   公益社団法人土木学会. コンクリート標準示方書(設計編)[S]. 東京: 公益社団法人土木学会, 2012.
[27]   HORDIJK D A. Local approach to fatigue of concrete[D]. Delft: Delft University of Technology, 1991.
[28]   CEB-FIP. Fib model code for concrete structures 2010[S]. Lausanne: International Federation for Structural Concrete, 2013.
[29]   赵刚, 雷玲 钢筋直锚与机械锚固的异同[J]. 建筑技术开发, 2014, 41 (7): 40- 43
ZHAO Gang, LEI Ling Similarities and differences between straight and mechanically anchoraged[J]. Building Techinique Development, 2014, 41 (7): 40- 43
doi: 10.3969/j.issn.1001-523X.2014.07.012
[1] Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.
[2] Mei-jiang GUI,Xiao-hu ZHOU,Xiao-liang XIE,Shi-qi LIU,Hao LI,Jin-li WANG,Zeng-guang HOU. Analysis and simulation of magnetic field for robot tactile perception[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1144-1151.
[3] Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.
[4] Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.
[5] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[6] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[7] Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.
[8] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[9] Song CHENG,Zong-feng ZOU. Optimization and experiment of heliostat surface shape bracing structure based on plane truss[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2310-2320.
[10] Juan-juan REN,Ji WANG,Jia-le LI,Shi-jie DENG,Jia-duo XU,Xiao LI. Damage law of track slab based on concrete damaged plasticity model[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1448-1456.
[11] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[12] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[13] WANG Hai-long, ZHU Yu-qi, XIA Jin, SUN Xiao-yan. Effect of composite connectors on bond performance between steel tube and concrete[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1107-1113.
[14] WANG Yong-bao, ZHAO Ren-da, WU De-bao. Time-dependent behavior of concrete-filled steel tube considering initial stress and bond-slip effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2306-2313.
[15] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.