Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1448-1456    DOI: 10.3785/j.issn.1008-973X.2019.08.003
Civil and Structural Engineering     
Damage law of track slab based on concrete damaged plasticity model
Juan-juan REN1,2(),Ji WANG1,2,Jia-le LI1,2,Shi-jie DENG1,2,Jia-duo XU3,Xiao LI1,2
1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. China Railway Design Group Co. Ltd, Tianjin 300143, China
Download: HTML     PDF(3344KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the concrete damaged plasticity model, a CRTS Ⅰ track slab’s damage distribution model was established. The rail supporting force measured by Tekscan sensor was taken as load data, and the vertical displacement of track slab and the tensile damage factors were taken as calculating indicators. The inner damage law of the upper surface of track slabs near anchor pockets was analyzed when the debonding was between cement and emulsified asphalt (CA) mortar and track slabs existed in the passenger-freight line. Results showed that the critical heights of debonding for both initial damage and complete damage gradually decreased with the extension of the debonding length. When the debonding reached to the second and third anchor pockets, the critical heights of initial damage generated by the load under passenger car were about 0.8 mm and 1.0 mm, respectively; meanwhile, the critical heights under freight car were about 0.5 mm and 0.8 mm, respectively. Once the height of the debonding was greater than the critical height of initial damage, due to the development of the damage of track slab, the overall bending stiffness of the track structure decreased rapidly, resulting in a rapid increase of the vertical displacement of the slab end. Under the load of passenger car, after the debonding reached to the third anchor pocket and the height of the debondong was more than 1.0 mm, the CA mortar was formed into a void, and the displacement of the slab end did not increase any more. Under the load of freight car, when the debonding reached to the third anchor pocket and the height of the debonding was more than 1.3 mm, the vertical displacement of the slab end increased rapidly with the increase of the height of the debonding, due to the generation of the secondary damage zone.



Key wordsconcrete damaged plasticity model      passenger-freight line      CRTS Ⅰ slab track      debonding      track slab     
Received: 08 July 2018      Published: 13 August 2019
CLC:  U 213  
Cite this article:

Juan-juan REN,Ji WANG,Jia-le LI,Shi-jie DENG,Jia-duo XU,Xiao LI. Damage law of track slab based on concrete damaged plasticity model. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1448-1456.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.003     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1448


基于混凝土塑性损伤模型的轨道板损伤规律

基于混凝土塑性损伤模型,建立CRTS Ⅰ型轨道板损伤分布计算模型,将Tekscan传感器测得的钢轨支点压力作为荷载输入,以轨道板竖向位移及拉伸损伤因子作为评价指标,分析客货共线条件下水泥乳化沥青(CA)砂浆离缝状态时锚穴周边轨道板上表面混凝土的内部损伤规律. 结果表明:随着离缝长度的不断扩展,损伤产生及完全损伤的临界离缝高度均逐渐变小;当离缝长度扩展至第2、3锚穴时,客车荷载下损伤产生的临界离缝高度分别约为0.8、1.0 mm,货车荷载下约为0.5、0.8 mm;一旦超出损伤产生的临界离缝高度,由于轨道板损伤的发展,轨道结构整体抗弯刚度迅速降低导致板端竖向位移迅速增大;对于客车荷载,当离缝扩展至第3锚穴且高度大于1.0 mm后,CA砂浆形成脱空,板端位移不再增长,对于货车荷载,当离缝扩展至第3锚穴且高度大于1.3 mm后,由于二次损伤带的产生,板端竖向位移随离缝高度的增大迅速增大.


关键词: 混凝土塑性损伤模型,  客货共线,  CRTS Ⅰ型板式无砟轨道,  砂浆离缝,  轨道板 
Fig.1 Stress-strain curve under uniaxial compression
Fig.2 Schematic diagram of elasticity modulus recovery of CDP model under reciprocating load
Fig.3 Definition curve of CDP model for C60 concrete
Fig.4 Finite element model of CRTS I slab track
Fig.5 Debonding schematic diagram of CRTS I slab track
Fig.6 Field test for rail supporting force
Fig.7 5040N Tekscan pressure sensor
Fig.8 Time history curve of tested rail supporting force
Fig.9 Maximum damage distribution of track slab under different cases
Fig.10 Influence factors of track slab damage factor
Fig.11 Time history curves of track slab end vertical displacement under loads of passenger car and freight car
Fig.12 Vertical displacement of slab end under load of passenger car
Fig.13 Vertical displacement change rate of slab end under load of passenger car
Fig.14 Vertical displacement of slab end under load of freight car
Fig.15 Vertical displacement change rate of slab end under load of freight car
[1]   任娟娟, 田根源, 徐家铎, 等 客货共线单元板式无砟轨道荷载作用特性与疲劳寿命预测[J]. 铁道学报, 2019, 41 (3): 110- 116
REN Juan-juan, TIAN Gen-yuan, XU Jia-duo, et al Load effect and fatigue life prediction of prefabricated slab track for mixed passenger and freight railway[J]. Journal of the China Railway Society, 2019, 41 (3): 110- 116
doi: 10.3969/j.issn.1001-8360.2019.03.015
[2]   REN J J, DENG S J, WEI K, et al Mechanical property deterioration of the prefabricated concrete slab in mixed passenger and freight railway tracks[J]. Construction and Building Materials, 2019, 208: 622- 637
doi: 10.1016/j.conbuildmat.2019.03.039
[3]   REN J J, LI X, YANG R S, et al Criteria for repairing damages of CA mortar for prefabricated framework-type slab track[J]. Construction and Building Materials, 2016, 110: 300- 311
doi: 10.1016/j.conbuildmat.2016.02.036
[4]   齐少轩, 任娟娟, 刘学毅 桥上CRTS II型道岔板砂浆离缝影响特性研究[J]. 工程力学, 2015, (6): 124- 132
QI Shao-xuan, REN Juan-juan, LIU Xue-yi Influence of debonding on the performance of CRTS II slab track turnouts on large bridges[J]. Engineering Mechanics, 2015, (6): 124- 132
[5]   谢露, 赵春光, 苏乾坤, 等 轨道板与CA砂浆间拍打作用研究[J]. 铁道科学与工程学报, 2017, 14 (4): 675- 681
XIE Lu, ZHAO Chun-guang, SU Qian-kun, et al Study on the flap action between slab and CA mortar[J]. Journal of Railway Science and Engineering, 2017, 14 (4): 675- 681
doi: 10.3969/j.issn.1672-7029.2017.04.002
[6]   LUBLINER J, OLIVER J, OLLER S, et al A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25 (3): 299- 326
doi: 10.1016/0020-7683(89)90050-4
[7]   LEE J, FENVES G L Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124 (8): 892- 900
doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
[8]   林红松. 基于断裂和损伤力学的无砟轨道静动力特性研究[D]. 成都: 西南交通大学, 2009.
LIN Hong-song. Research on the static and dynamic property of ballastless track based on fracture and damage mechanics [D]. Chengdu: Southwest Jiaotong University, 2009.
[9]   黄慧超, 徐坤, 任娟娟 双块式无砟轨道连续道床板裂纹修复材料性能分析[J]. 铁道标准设计, 2013, (12): 50- 53
HUANG Hui-chao, XU Kun, REN Juan-juan Performance analysis of repair material for crack repairing of continuous track slab of bi-block ballastless track[J]. Railway Standard Design, 2013, (12): 50- 53
[10]   方树薇. 北京地铁无砟轨道开裂机理及其对列车运营安全的影响研究[D]. 北京: 北京交通大学, 2014.
FANG Shu-wei. Study on crack mechanism of ballastless track and its impact on safety of train operation in Beijing metro [D]. Beijing: Beijing Jiaotong University, 2014.
[11]   刘建超. 温度荷载作用下CRTS Ⅱ 型板式无砟轨道砂浆层界面损伤分析[D]. 成都: 西南交通大学, 2016.
LIU Jian-chao. Damage analysis of cement asphalt mortar layers interface for CRTS II ballastless slab track [D]. Chengdu: Southwest Jiaotong University, 2016.
[12]   朱胜阳, 蔡成标 温度和列车动荷载作用下双块式无砟轨道道床板损伤特性研究[J]. 中国铁道科学, 2012, 33 (1): 6- 12
ZHU Sheng-yang, CAI Cheng-biao Research on the damage characteristics of double-block ballastless track bed slab under temperature and vehicle dynamic loads[J]. China Railway Science, 2012, 33 (1): 6- 12
doi: 10.3969/j.issn.1001-4632.2012.01.02
[13]   徐俊祥. 混凝土结构的损伤力学分析[D]. 南京: 河海大学, 2004.
XU Jun-xiang. Analysis of concrete structure based on damage mechanics [D]. Nanjing: Hohai University, 2004.
[14]   贾少文. 基于连续损伤力学的混凝土疲劳损伤模型[D]. 哈尔滨: 哈尔滨工业大学, 2009.
JIA Shao-wen. Continuum damage mechanics-based fatigue damage model for concrete [D]. Harbin: Harbin Institute of Technology, 2009.
[15]   薛明琛, 赵永生, 汤美安 断裂力学和损伤力学在混凝土中的应用[J]. 山西建筑, 2007, 33 (36): 19- 20
XUE Ming-chen, ZHAO Yong-sheng, TANG Mei-an Fracture mechanics and damage mechanics application of concrete[J]. Shanxi Architecture, 2007, 33 (36): 19- 20
doi: 10.3969/j.issn.1009-6825.2007.36.010
[16]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010−2010[S]. 北京: 中国建筑工业出版社, 2014: 211.
[17]   张劲, 王庆扬, 胡守营, 等 ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38 (8): 127- 130
ZHANG Jing, WANG Qing-yang, HU Shou-ying, et al Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38 (8): 127- 130
[18]   刘克飞. 框架型板式轨道水泥乳化沥青砂浆伤损及维修标准研究[D]. 成都: 西南交通大学, 2013.
LIU Ke-fei. Research on cement asphalt mortar damage and maintenance standards for frame type of slab track [D]. Chengdu: Southwest Jiaotong University, 2013.
[19]   徐光鑫. 预应力钢棒失效对CRTS Ⅰ 型单元轨道板受力性能的影响[D]. 成都: 西南交通大学, 2014.
XU Guang-xin. Study on pc steel bar's failure on unit of CRTS I slab track performance [D]. Chengdu: Southwest Jiaotong University, 2014.
[20]   赵华卫. 客货共线无砟轨道荷载作用特征分析[D]. 成都: 西南交通大学, 2017.
ZHAO Hua-wei. The train load characteristics for mixed passenger and freight railways with ballastless track [D]. Chengdu: Southwest Jiaotong University, 2017.
[1] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1593-1598.