Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1562-1572    DOI: 10.3785/j.issn.1008-973X.2023.08.009
    
Life-cycle multi-attribute decision making of RC structures considering sustainability
Ke-xian WU1,2,3(),De-jun JIN2,3,Wei-liang JIN1,*(),Xue-hua FAN4,Yue-lin HUANG4,Xiao-yu HE2,3
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Institute of Communications Co. Ltd, Hangzhou 310030, China
3. Key Laboratory of Integrated Transportation Theory and Transportation Industry, Hangzhou 310006, China
4. Jiaxing Binhai Holding Group Co. Ltd, Jiaxing 374200, China
Download: HTML     PDF(1068KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-attribute decision making method considering sustainability for the design and maintenance of reinforced concrete (RC) structures in chloride environment was proposed to effectively prolong the service life of major engineering structures and reduce their adverse effects on the environment and society. The proposed method can solve the problem of inconsistent ranking of different attributes in engineering decisions, and provide decision indicators and ranking methods that comprehensively consider sustainability for decision makers with different risk attitudes. In this method, the performance evaluation module, the cost analysis module, and the utility analysis module were established. The long-term performance deterioration, improvement effect and maintenance timing of various maintenance measures (including epoxy coating, bidirectional electromigration, strengthening with bonded steel plate and carbon fiber reinforced polymer (CFRP)), life-cycle sustainability cost and its uncertainty were sequentially analyzed. Furthermore, the weights of economic, environmental and social costs were determined by the combined weighting method, and the multi-attribute utility values of different design and maintenance schemes were calculated for decision making. A case study of RC box girder with a design service life of 200 years was conducted. Result indicates that the long-life schemes designed to improve structural performance, reduce the risk of failure, and reduce the number of maintenances are more sustainable, but the combined utilities of the different types of costs and performance improvements need to be weighed.



Key wordsreinforced concrete (RC) structure      multi-attribute decision making      utility theory      sustainability      long-term performance      maintenance measures     
Received: 21 December 2022      Published: 31 August 2023
CLC:  TU 375  
Fund:  国家自然科学基金资助项目(51820105012,51638013); 浙江省交通运输厅科技计划资助项目(2023007); 交通运输行业重点科技资助项目(2020-GT-010)
Corresponding Authors: Wei-liang JIN     E-mail: wukexianzju@163.com;jinwl@zju.edu.cn
Cite this article:

Ke-xian WU,De-jun JIN,Wei-liang JIN,Xue-hua FAN,Yue-lin HUANG,Xiao-yu HE. Life-cycle multi-attribute decision making of RC structures considering sustainability. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1562-1572.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.009     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1562


考虑可持续性的RC结构全寿命多属性决策

为了有效延长重大交通基础设施的使用寿命,降低其对环境和社会的不利影响,针对氯盐环境中钢筋混凝土(RC)结构的设计与维护提出考虑可持续性成本的多属性决策方法. 该方法能够解决工程决策中不同属性排序不一致的问题,为不同风险态度的决策者提供综合考虑可持续性的决策指标和排序方法. 多属性决策方法设置性能评估、成本分析和效用分析模块,依次分析RC结构在氯盐环境下的长期性能劣化规律、不同维护措施的提升效果与维护时机(包括环氧涂层、双向电迁移、黏贴钢板和黏贴碳纤维增强复合材料(CFRP)措施)、全寿命可持续性成本及其不确定性,进一步通过组合赋权法确定经济、环境和社会成本的权重,计算得到不同设计与维护方案的多属性效用值用于决策. 对设计使用寿命为200 a的RC箱梁进行案例分析,结果表明:在初始设计时能够合理提高结构性能、降低失效风险、减少维护次数的长寿命方案具有更好的可持续性,但必须权衡各类成本和性能提升之间的综合效用.


关键词: 钢筋混凝土(RC)结构,  多属性决策,  效用理论,  可持续性,  长期性能,  维护措施 
Fig.1 Multi-attribute decision-making process of structural long-life design and maintenance based on sustainability
维护措施 CEC CEV CSO
环氧涂层 108 2.97 具体分析
双向电迁移 171 15.00
黏贴钢板:6 mm厚
(钢板每增厚1 mm)
1149 (+57) 82.77 (+8.76)
黏贴CFRP:1层
(纤维布每增加1层)
465 (+274) 5.70 (+0.50)
Tab.1 Unit sustainability cost of maintenance measures (元·m−2)
Fig.2 Cross section of box girder
变量 单位 均值 变异系数 分布类型1) 数据来源
注:1)分布类型中N表示正态分布,LN表示对数正态分布,U表示均匀分布,W表示Weibull分布;2)*表示数值或分布类型为假设;3)变异系数中括号内为均匀分布的下界和上界.
表面氯离子质量分数 % 0.5464 0.1 N (截尾: 0) 均值:检测报告;变异系数和分布:文献[33]
临界氯离子质量分数 % 0.054 0.1*2) LN 文献[34]
混凝土保护层厚度 mm 45.48 0.133 LN* 检测报告
混凝土抗压强度标准值 MPa 40 0.156 LN* GB 50010—2015[21]
钢筋屈服强度标准值 MPa 400 0.075 LN* GB 50010—2015[21]
钢筋表面的温度 15.4 0.044 N 文献[35]
钢筋直径 mm 25 ? 定值 设计文件
点蚀系数 ? 6 0.33 N (截尾: 1) 文献[36]
抗力模型不确定性系数 ? 1.02 0.06 LN 文献[37]、[38]
永久荷载模型不确定性系数 ? 1.05 0.10 LN 文献[37]
可变荷载模型不确定性系数 ? 1.15 0.18 LN 文献[37]
环氧涂层后氯离子扩散系数减小幅度 ? 0.2675 [0.135, 0.400]3) U* 文献[39]~[42]
双向电迁移后混凝土内残余氯离子质量分数 % 0.128 [0.038, 0.218] U* 检测报告
钢板锈蚀模型参数a mm 11.39×10?2 0.42 LN 文献[43]
钢板锈蚀模型参数b ? 0.83 0.40 LN 文献[43]
钢板防护涂层防护年限 a 6 0.15 LN 文献[43]
CFRP加固有效年限 a 20* 0.25* LN* 假设
CFRP弹性模量 MPa 2.3×105 0.1 LN 文献[38]
CFRP拉伸强度 MPa 3900 0.1 W 文献[38]
Tab.2 Statistical properties of random parameters of case bridge
Fig.3 Life extension effects and reliability index increments of different maintenance measures at different time
方案名称 方案内容 Timp $ {P}_{\mathrm{f},200} $
原方案 $ \Phi $25普通钢筋+C40混凝土 0 0.494
方案1 $ \Phi $25不锈钢筋+C40混凝土 0 10-12
方案2 $ \Phi $36普通钢筋+C70混凝土 0 10?5
方案3 ①环氧涂层+双向电迁移 10 10?5
②黏贴10 mm钢板 93、108、121、132、142(共5次)
③黏贴12 mm钢板 151、160、169、177、185、193(共6次)
方案4 ①环氧涂层+双向电迁移 10 10?7
②黏贴3层CFRP 93、105、116、125、133(共5次)
③黏贴5层CFRP 140、148、156、163、170、177、184、191、198(共9次)
方案5 重建 75、150 10?8
Tab.3 Viable design, maintenance and reconstruction options
方案名称 CEC CEV CSO LCC
实际值 最大值 最小值 实际值 最大值 最小值 实际值 最大值1) 最小值
1)注:最大值对应95%分位值成本,最小值对应5%分位值成本.
原方案 7.39 7.93 6.93 9.21 18.24 3.93 27.43 32.49 23.32 44.03
方案1 17.32 18.58 16.12 6.25 12.21 2.63 0.0199 0.0306 0.0129 23.59
方案2 9.20 9.86 8.71 6.43 12.51 2.81 0.0204 0.0311 0.0135 15.65
方案3 7.99 8.52 7.52 6.59 12.71 3.03 28.16 29.60 26.95 42.73
方案4 8.07 8.61 7.60 6.22 12.30 2.70 35.83 37.46 34.48 50.13
方案5 9.37 10.05 8.77 18.50 36.62 7.90 110.98 125.48 99.12 138.85
Tab.4 Sustainability costs for different long-life design and maintenance options (万元·m−1)
Fig.4 Single-attribute utility values of life-cycle economic, environmental, and social costs
Fig.5 Multi-attribute utility values of life-cycle sustainability costs
[1]   彭建新, 邵旭东, 张建仁 混凝土桥梁全寿命设计方法和例证[J]. 中国公路学报, 2013, 26 (3): 101- 109
PENG Jian-xin, SHAO Xu-dong, ZHANG Jian-ren Whole-life design method and illustration for concrete bridges[J]. China Journal of Highway and Transport, 2013, 26 (3): 101- 109
doi: 10.3969/j.issn.1001-7372.2013.03.011
[2]   王竹君, 徐祖恩, 吴柯娴, 等 基于全寿命环境成本的工程结构维护方案优化[J]. 建筑结构学报, 2019, 40 (2): 227- 237
WANG Zhu-jun, XU Zu-en, WU Ke-xian, et al Maintenance plan optimization of engineering structures based on life-cycle environmental costs[J]. Journal of Building Structures, 2019, 40 (2): 227- 237
[3]   FRANGOPOL D M, KONG J S, GHARAIBEH E S Reliability-based life-cycle management of highway bridges[J]. Journal of Computing in Civil Engineering, 2001, 15 (1): 27- 34
doi: 10.1061/(ASCE)0887-3801(2001)15:1(27)
[4]   孙晓燕, 董伟伟, 王海龙, 等 考虑生命周期碳补偿成本的桥梁维修优化决策[J]. 浙江大学学报: 工学版, 2012, 46 (11): 2013- 2019
SUN Xiao-yan, DONG Wei-wei, WANG Hai-long, et al Bridge maintenance optimization based on life cycle carbon offset cost analysis[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 2013- 2019
[5]   SABATINO S, FRANGOPOL D M, DONG Y Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude[J]. Engineering Structures, 2015, 102: 310- 321
doi: 10.1016/j.engstruct.2015.07.030
[6]   PENG J, YANG Y, BIAN H, et al Optimisation of maintenance strategy of deteriorating bridges considering sustainability criteria[J]. Structure and Infrastructure Engineering, 2022, 18 (3): 395- 411
doi: 10.1080/15732479.2020.1855215
[7]   WANG Z, YANG D Y, FRANGOPOL D M, et al Inclusion of environmental impacts in life-cycle cost analysis of bridge structures[J]. Sustainable and Resilient Infrastructure, 2020, 5 (4): 252- 267
doi: 10.1080/23789689.2018.1542212
[8]   WANG Z, DONG Y, JIN W Life-cycle cost analysis of deteriorating civil infrastructures incorporating social sustainability[J]. Journal of Infrastructure Systems, 2021, 27 (3): 04021013
doi: 10.1061/(ASCE)IS.1943-555X.0000607
[9]   WU K, YANG D Y, FRANGOPOL D M, et al Multi-stakeholder framework for assessing the life-cycle social cost of construction projects[J]. Structure and Infrastructure Engineering, 2022, 18 (1): 129- 144
doi: 10.1080/15732479.2021.1924795
[10]   KENDALL A, KEOLEIAN G A, HELFAND G E Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications[J]. Journal of Infrastructure Systems, 2008, 14 (3): 214- 222
doi: 10.1061/(ASCE)1076-0342(2008)14:3(214)
[11]   ALLAH BUKHSH Z, STIPANOVIC I, KLANKER G, et al Network level bridges maintenance planning using multi-attribute utility theory[J]. Structure and Infrastructure Engineering, 2019, 15 (7): 872- 885
doi: 10.1080/15732479.2017.1414858
[12]   ANG A H-S, TANG W H. Probability concepts in engineering planning and design volume II: decision, risk and reliability[M]. New York: Wiley, 1984.
[13]   JIMÉNEZ A, RIOS-INSUA S, MATEOS A A decision support system for multiattribute utility evaluation based on imprecise assignments[J]. Decision Support Systems, 2003, 36 (1): 65- 79
doi: 10.1016/S0167-9236(02)00137-9
[14]   金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京: 科学出版社, 2014.
JIN Wei-liang, ZHAO Yu-xi. Durability of concrete structures[M]. Beijing: Science Press, 2014.
[15]   COLLEPARDI M, MARCIALIS A, TURRIZIANI R Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55 (10): 534- 535
doi: 10.1111/j.1151-2916.1972.tb13424.x
[16]   VU K A T, STEWART M G Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22 (4): 313- 333
doi: 10.1016/S0167-4730(00)00018-7
[17]   JONES D A. Principles and prevention of corrosion[M]. New Jersey: Prentice-Hall, 1996: 168-198.
[18]   LIU T, WEYERS R W Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998, 28 (3): 365- 379
doi: 10.1016/S0008-8846(98)00259-2
[19]   VAL D V, MELCHERS R E Reliability of deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123 (12): 1638- 1644
doi: 10.1061/(ASCE)0733-9445(1997)123:12(1638)
[20]   VIDAL T, CASTEL A, FRANÇOIS R Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004, 34 (1): 165- 174
doi: 10.1016/S0008-8846(03)00246-1
[21]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2015[S]. 北京: 中国建筑工业出版社, 2015.
[22]   LI C Q Reliability based service life prediction of corrosion affected concrete structures[J]. Journal of Structural Engineering, 2004, 130 (10): 1570- 1577
doi: 10.1061/(ASCE)0733-9445(2004)130:10(1570)
[23]   中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362-2018[S]. 北京: 人民交通出版社, 2018.
[24]   中华人民共和国住房和城乡建设部. 既有混凝土结构耐久性评定标准: GB/T 51355-2019[S]. 北京: 中国建筑工业出版社, 2019.
[25]   金伟良, 吴航通, 许晨, 等 钢筋混凝土结构耐久性提升技术研究进展[J]. 水利水电科技进展, 2015, 35 (5): 68- 76
JIN Wei-liang, WU Hang-tong, XU Chen, et al Advances in research of technologies for durability enhancement of reinforced concrete structures[J]. Advances in Science and Technology of Water Resources, 2015, 35 (5): 68- 76
[26]   ELSENER B, BÜCHLER M, STALDER F, et al Migrating corrosion inhibitor blend for reinforced concrete: Part 1 prevention of corrosion[J]. Corrosion, 1999, 55 (12): 1155- 1163
doi: 10.5006/1.3283953
[27]   CHENG X, XIA J, WANG W, et al Numerical modeling of the effect of concrete porosity evolution on electrochemical chloride removal from concrete structures[J]. Construction and Building Materials, 2021, 267 (18): 120929
[28]   贾金青, 胡玉龙, 王东来, 等 混凝土抗压强度与孔隙率关系的研究[J]. 混凝土, 2015, (10): 56- 59
JIA Jin-qing, HU Yu-long, WANG Dong-lai, et al Effects of porosity on the compressive strength of concrete[J]. Concrete, 2015, (10): 56- 59
doi: 10.3969/j.issn.1002-3550.2015.10.014
[29]   中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范: GB 50367-2013[S]. 北京: 中国建筑工业出版社, 2013.
[30]   吴智深 外贴碳纤维布加固桥梁结构失效原因与对策分析[J]. 现代交通技术, 2022, 19 (3): 1- 14
WU Zhi-shen Failure causes and countermeasure analyses of bridge structures strengthened with carbon fiber sheets[J]. Modern Transportation Technology, 2022, 19 (3): 1- 14
doi: 10.3969/j.issn.1672-9889.2022.03.001
[31]   中华人民共和国交通运输部. 公路桥梁养护工程预算定额: JTG/T 5612-2020[S]. 北京: 人民交通出版社, 2020.
[32]   吴柯娴, 王竹君, 金伟良, 等 装配式混凝土结构可持续成本量化分析[J]. 建筑结构学报, 2021, 42 (5): 133- 144
WU Ke-xian, WANG Zhu-jun, JIN Wei-liang, et al Quantitative analysis of sustainable cost of prefabricated concrete structures[J]. Journal of Building Structures, 2021, 42 (5): 133- 144
[33]   ENRIGHT M P, FRANGOPOL D M Reliability-based condition assessment of deteriorating concrete bridges considering load redistribution[J]. Structural Safety, 1999, 21 (2): 159- 195
doi: 10.1016/S0167-4730(99)00015-6
[34]   王胜年, 田俊峰, 范志宏 基于暴露试验和实体工程调查的海工混凝土结构耐久性寿命预测理论和方法[J]. 中国港湾建设, 2010, (Suppl.1): 68- 74
WANG Sheng-nian, TIAN Jun-feng, FAN Zhi-hong Research on theory and method of service life prediction of marine concrete structures based on exposure test and filed investigation[J]. China Harbour Engineering, 2010, (Suppl.1): 68- 74
doi: 10.3969/j.issn.1003-3688.2010.z1.015
[35]   GUO T, SAUSE R, FRANGOPOL D M, et al Time-dependent reliability of PSC box-girder bridge considering creep, shrinkage, and corrosion[J]. Journal of Bridge Engineering, 2011, 16 (1): 29- 43
doi: 10.1061/(ASCE)BE.1943-5592.0000135
[36]   STEWART M G, ROSOWSKY D V Time-dependent reliability of deteriorating reinforced concrete bridge decks[J]. Structural Safety, 1998, 20 (1): 91- 109
doi: 10.1016/S0167-4730(97)00021-0
[37]   NOWAK A S. Calibration of LRFD bridge design code: NCHRP Report 368 [R]. Washington D. C. : Transportation Research Board, National Research Council, 1999: 10-20.
[38]   YANG D Y, FRANGOPOL D M, TENG J G Probabilistic life-cycle optimization of durability-enhancing maintenance actions: application to FRP strengthening planning[J]. Engineering Structures, 2019, 188: 340- 349
doi: 10.1016/j.engstruct.2019.02.055
[39]   IBRAHIM M, AL-GAHTANI A S, MASLEHUDDIN M, et al Use of surface treatment materials to improve concrete durability[J]. Journal of Materials in Civil Engineering, 1999, 11 (1): 36- 40
doi: 10.1061/(ASCE)0899-1561(1999)11:1(36)
[40]   MORADLLO M K, SHEKARCHI M, HOSEINI M Time-dependent performance of concrete surface coatings in tidal zone of marine environment[J]. Construction and Building Materials, 2012, 30: 198- 205
doi: 10.1016/j.conbuildmat.2011.11.044
[41]   MEDEIROS M H F, HELENE P Surface treatment of reinforced concrete in marine environment: influence on chloride diffusion coefficient and capillary water absorption[J]. Construction and Building Materials, 2009, 23 (3): 1476- 1484
doi: 10.1016/j.conbuildmat.2008.06.013
[42]   ALMUSALLAM A A, KHAN F M, DULAIJAN S U, et al Effectiveness of surface coatings in improving concrete durability[J]. Cement and Concrete Composites, 2003, 25 (4/5): 473- 481
[43]   GONG C, FRANGOPOL D M Condition-based multiobjective maintenance decision making for highway bridges considering risk perceptions[J]. Journal of Structural Engineering, 2020, 146 (5): 04020051
doi: 10.1061/(ASCE)ST.1943-541X.0002570
[44]   罗玮. 基于计划行为和多属性效用理论的PC桥梁可持续加固策略[D]. 北京: 北京交通大学, 2021: 104.
LUO Wei. Sustainable strengthening strategy for PC bridges based on theory of planned behavior and multi-attribute utility[D]. Beijing: Beijing Jiaotong University, 2021: 104.
[1] XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Long-term performance of multi-box composite bridges under transverse prestressing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 956-962.
[2] PEI Zhi, LU Jian-sha, ZHENG Li. Yard allocation decision making in container terminals
with generalized intuitionistic fuzzy numbers
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2274-2279.