|
|
Failure probability estimation for structures based on health monitoring data and Bayesian network |
Zhi MA1,2,3( ),Yao-zhi LUO4,*( ),Hui-bin GE4,Hua-ping WAN4,Wen-wei FU5,Yan-bin SHEN4 |
1. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China 2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou City University, Hangzhou 310015, China 3. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou 310015, China 4. Space Structure Research Center, Zhejiang University, Hangzhou 310058, China 5. Department of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China |
|
|
Abstract Based on health monitoring data and Bayesian network (BN), a real-time estimation method of structural system failure probability was proposed, which was applied for assessing structural safety conditions dynamically. First, the Bayesian dynamic linear model (BDLM) was established using structural health monitoring data, and the probabilistic distribution of the load effect was calculated. Time-varying reliability of structural components was obtained, combined with distribution of structural resistance. Then, the BN was constructed according to the main failure mode of the structure, where the dependency between failure of the components and the structure can be described. Through probability inference of the BN, the failure probability of the structural system can be obtained from the component reliability, and the quantitative assessment of overall structural safety conditions was achieved. Finally, the proposed method was verified by the simulated data of a three-bar truss and the measured data of static failure test of a single layer reticulated shell. Results show that the proposed method properly quantifies the safety condition of the structure and successfully gives the early warning of the structural failure.
|
Received: 26 September 2022
Published: 31 August 2023
|
|
Fund: 浙江省自然科学基金资助项目(LQ22E080013);浙江省空间结构重点实验室资助项目(202107);浙江省重点研发计划资助项目(2021C03154) |
Corresponding Authors:
Yao-zhi LUO
E-mail: mazhi@hzcu.edu.cn;luoyz@zju.edu.cn
|
基于健康监测数据和贝叶斯网络的结构失效概率评估
基于健康监测数据和贝叶斯网络(BN),提出结构体系失效概率的实时评估方法,用于结构整体安全状态的动态评价. 根据结构响应监测数据建立贝叶斯动态线性模型(BDLM),估计结构荷载效应的概率分布,同时结合结构抗力分布,计算构件的时变可靠指标;根据结构主要失效模式构建贝叶斯网络,以描述构件失效与结构整体失效间的依赖关系;通过贝叶斯网络的概率递推从构件可靠指标求得结构体系失效概率,实现结构整体安全状态的量化评估. 利用三杆桁架模型的数值模拟数据和某单层网壳结构静力破坏试验过程的实测数据对该方法进行验证. 结果表明,所提出的结构失效概率评估方法较好地量化了结构的安全状态,并成功预警了结构体系的破坏.
关键词:
结构健康监测,
贝叶斯网络,
结构失效概率评估,
贝叶斯动态线性模型,
时变可靠指标
|
|
[27] |
MU H Q, YUEN K V Novel outlier-resistant extended Kalman filter for robust online structural identification[J]. Journal of Engineering Mechanics, 2015, 141 (1): 04014100
doi: 10.1061/(ASCE)EM.1943-7889.0000810
|
|
|
[28] |
MU H Q, KUOK S C, YUEN K V Stable robust extended Kalman filter[J]. Journal of Aerospace Engineering, 2017, 30 (2): B4016010
doi: 10.1061/(ASCE)AS.1943-5525.0000665
|
|
|
[29] |
ZHANG Y M, WANG H, WAN H P, et al Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model[J]. Structural Health Monitoring, 2021, 20 (6): 2936- 2952
doi: 10.1177/1475921720977020
|
|
|
[30] |
GE H, WAN H, ZHENG Y, et al Experimental and numerical study on stability behavior of reticulated shell composed of plate members[J]. Journal of Constructional Steel Research, 2020, 171: 106102
doi: 10.1016/j.jcsr.2020.106102
|
|
|
[31] |
中华人民共和国住房和城乡建设部. 钢结构设计规范: GB 50017-2017 [S]. 北京: 中国建筑工业出版社出版, 2017: 88.
|
|
|
[32] |
顾磊, 肖坤, 张剑, 等 考虑杆件失稳的单层球面网壳稳定性分析与试验研究[J]. 建筑结构学报, 2017, 38 (7): 25- 33
doi: 10.14006/j.jzjgxb.2017.07.004
|
|
|
[1] |
罗尧治, 赵靖宇 空间结构健康监测研究现状与展望[J]. 建筑结构学报, 2022, 43 (10): 16- 28 LUO Yao-zhi, ZHAO Jing-yu Research status and future prospects of space structure health monitoring[J]. Journal of Building Structures, 2022, 43 (10): 16- 28
|
|
|
[2] |
HAWCHAR L, SOUEIDY C E, SCHOEFS F Principal component analysis and polynomial chaos expansion for time-variant reliability problems[J]. Reliability Engineering and System Safety, 2017, 167: 406- 416
doi: 10.1016/j.ress.2017.06.024
|
|
|
[3] |
CATBAS F N, SUSOY M, FRANGOPOL D M Structural health monitoring and reliability estimation: long span truss bridge application with environmental monitoring data[J]. Engineering Structures, 2008, 30 (9): 2347- 2359
doi: 10.1016/j.engstruct.2008.01.013
|
|
|
[4] |
陈龙, 黄天立 基于贝叶斯更新和逆高斯过程的在役钢筋混凝土桥梁构件可靠度动态预测方法[J]. 工程力学, 2020, 37 (4): 186- 195 CHEN Long, HUANG Tian-li Dynamic prediction of reliability of in-service RC bridges using the Bayesian updating and inverse gaussian process[J]. Engineering Mechanics, 2020, 37 (4): 186- 195
|
|
|
[5] |
鲁乃唯, 罗媛, 汪勤用, 等 车载下大跨度桥梁动力可靠度评估[J]. 浙江大学学报: 工学版, 2016, 50 (12): 2328- 2335
|
|
|
[32] |
GU Lei, XIAO Kun, ZHANG Jian, et al. Stability analysis and test research of single-layer latticed dome considering bar buckling[J]. Journal of Building Structures, 2017, 38 (7): 25- 33
doi: 10.14006/j.jzjgxb.2017.07.004
|
|
|
[5] |
LU Nai-wei, LUO Yuan, WANG Qin-yong, et al Dynamic reliability assessment for long-span bridges under vehicle load[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (12): 2328- 2335
|
|
|
[6] |
NI Y Q, CHEN R Strain monitoring based bridge reliability assessment using parametric Bayesian mixture model[J]. Engineering Structures, 2021, 226: 111406
doi: 10.1016/j.engstruct.2020.111406
|
|
|
[7] |
ZHU B, FRANGOPOL D M Incorporation of structural health monitoring data on load effects in the reliability and redundancy assessment of ship cross-sections using Bayesian updating[J]. Structural Health Monitoring: An International Journal, 2013, 12 (4): 377- 392
doi: 10.1177/1475921713495082
|
|
|
[8] |
刘月飞. 考虑失效模式和验证模式相关性的桥梁结构体系可靠度分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. LIU Yue-fei. System reliability analysis of bridge structures considering correlation of failure modes and proof modes [D]. Harbin: Harbin Institute of Technology, 2015.
|
|
|
[9] |
PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference [M]. San Mateo: Morgan Kaufmann Publishers Inc., 1988.
|
|
|
[10] |
娄文忠, 赵悦岑, 冯恒振, 等 基于贝叶斯网络的MEMS安全系统可靠性分析[J]. 北京理工大学学报, 2021, 41 (9): 952- 960 LOU Wen-zhong, ZHAO Yue-cen, FENG Heng-zhen, et al Reliability analysis on MEMS S&A device based on Bayesian network[J]. Transaction of Beijing Institute of Technology, 2021, 41 (9): 952- 960
doi: 10.15918/j.tbit1001-0645.2020.065
|
|
|
[11] |
颉芳弟, 翟强, 顾伟红 基于动态贝叶斯网络的TBM卡机风险预测[J]. 浙江大学学报: 工学版, 2021, 55 (7): 1339- 1350 XIE Fang-di, ZHAI Qiang, GU Wei-hong Risk prediction of TBM jamming based on dynamic Bayesian network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (7): 1339- 1350
|
|
|
[12] |
WEBER P, MEDINA-OLIVA G, SIMON C, et al Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (4): 671- 682
doi: 10.1016/j.engappai.2010.06.002
|
|
|
[13] |
TIEN I, KIUREGHIAN D A Reliability assessment of critical infrastructure using Bayesian networks[J]. Journal of Infrastructure Systems, 2017, 23 (4): 04017025
doi: 10.1061/(ASCE)IS.1943-555X.0000384
|
|
|
[14] |
GEHL P, D AYALA D Development of Bayesian networks for the multi-hazard fragility assessment of bridge systems[J]. Structural Safety, 2016, 60: 37- 46
doi: 10.1016/j.strusafe.2016.01.006
|
|
|
[15] |
STRAUB D, KIUREGHIAN A D Bayesian network enhanced with structural reliability methods: application[J]. Journal of Engineering Mechanics, 2010, 136 (10): 1259- 1270
doi: 10.1061/(ASCE)EM.1943-7889.0000170
|
|
|
[16] |
STRAUB D, KIUREGHIAN A D Bayesian network enhanced with structural reliability methods: methodology[J]. Journal of Engineering Mechanics, 2010, 136 (10): 1248- 1258
doi: 10.1061/(ASCE)EM.1943-7889.0000173
|
|
|
[17] |
YAZDANI A, SHAHIDZADEH M, TAKADA T Bayesian networks for disaggregation of structural reliability[J]. Structural Safety, 2020, 82: 101892
doi: 10.1016/j.strusafe.2019.101892
|
|
|
[18] |
LUQUE J, STRAUB D Reliability analysis and updating of deteriorating systems with dynamic Bayesian networks[J]. Structural Safety, 2016, 62: 34- 46
doi: 10.1016/j.strusafe.2016.03.004
|
|
|
[19] |
ZHU J, COLLETTE M A dynamic discretization method for reliability inference in dynamic Bayesian networks[J]. Reliability Engineering and System Safety, 2015, 138: 242- 252
doi: 10.1016/j.ress.2015.01.017
|
|
|
[20] |
XIANG W, ZHOU W Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique[J]. Structure and Infrastructure Engineering, 2020, 16 (8): 1161- 1176
doi: 10.1080/15732479.2019.1692363
|
|
|
[21] |
LIU H, HE X, JIAO Y, et al Reliability assessment of deflection limit state of a simply supported bridge using vibration data and dynamic Bayesian network inference[J]. Sensors, 2019, 19 (4): 837
doi: 10.3390/s19040837
|
|
|
[22] |
刘娇, 刘敬敏, 余波, 等 工程结构体系可靠度分析的最新研究进展[J]. 工程力学, 2017, 34 (Suppl.1): 31- 37 LIU Jiao, LIU Jin-min, YU Bo, et al Recent research progress on structural system reliability analysis[J]. Engineering Mechanics, 2017, 34 (Suppl.1): 31- 37
|
|
|
[23] |
郭小康, 李国强 用可靠度理论确定屈曲约束支撑钢框架的设计原则[J]. 工程抗震与加固改造, 2010, 32 (2): 91- 95 GUO Xiao-kang, LI Guo-qiang Determination of design principle of steel frames with buckling restrained braces using Reliability Theory[J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32 (2): 91- 95
doi: 10.16226/j.issn.1002-8412.2010.02.017
|
|
|
[24] |
MA Z, YUN C, SHEN Y, et al Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium[J]. Smart Structures and Systems, 2019, 24 (4): 507- 524
|
|
|
[25] |
WEST M, HARRISON J. Bayesian forecasting and dynamic models[M]. New York: Springer Science & Business Media, 1997.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|