Please wait a minute...
J4  2014, Vol. 48 Issue (3): 398-403    DOI: 10.3785/j.issn.1008-973X.2014.03.004
Threat assessment method based on time series forecast
ZHAO Jian-jun1, WANG Yi2, YANG Li-bin1
1.Department of Ordance Science and Technology, Naval Aeronautic and Astronautical Institute, Yantai 264001, China;
2.Graduate Students Brigade, Naval Aeronautic and Astronautical University, Yantai 264001, China
Download:   PDF(734KB) HTML
Export: BibTeX | EndNote (RIS)      


Aiming at the problems of transition probability getting and observational data missing in dynamic Bayesian network of threat assessment, a time series forecasting model was set up. Then the complete data set and the forward recursive algorithm were applied to parameter learning after the full data got. The threat of target was assessed based on the dynamic Bayesian network. Simulation  shows that: compared to the expectation-maximization algorithm, the time series method can get higher accuracy of forecast data, have shorter learning time, increase the efficiency of the threat assessment greatly, and meet the actual operational needs.

Published: 10 June 2018
CLC:  TP 391  
Cite this article:

ZHAO Jian-jun, WANG Yi, YANG Li-bin. Threat assessment method based on time series forecast. J4, 2014, 48(3): 398-403.

URL:     OR


针对在威胁估计的动态贝叶斯网络中,转移概率的获取和观测数据的缺失问题.建立时间序列预测模型,对缺失数据进行预测;在获得完整数据后,利用完整数据集和前向递归算法完成参数学习;通过动态贝叶斯网络对目标的威胁进行估计.仿真结果表明:相比于数学期望最大算法,时间序列方法预测数据精度较高,学习时间短, 能大大提高来袭目标威胁估计的效率,满足实际作战需要.

[1] 史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630.
SHI Jian-guo,GAO Xiao-guang. Direct calculation infer-ence algorithm for discrete dynamic bayesian network[J]. Systems Engineering and Electronics,2005,27(9):1626-1630.
[2] 高晓光,史建国.变结构离散动态贝叶斯网络及其推理算法[J].系统工程学报,2007,22(1):9-14.
GAO Xiao-guang,SHI Jian-guo. Structure varied discrete dynamic Bayesian network and its inference algorithm[J]. Journal of Systems Engineering,2007,22(1):9-14.
[3] 史建国,高晓光,王庆官.变结构离散动态贝叶斯网络参数的自适应产生[J].系统工程与电子技术,2008,30(10):1836-1839.
SHI Jian-guo,GAO Xiao-guang,WANG Qing-guan. To generate the parameters of the structure varied discretedynamic Bayesian network adaptively[J]. Systems Engineering and Electronics,2008,30(10):1836-1839.
[4] 郑景嵩,高晓光,陈冲.基于弹性变结构DDBN网络的空战目标识别[J].系统仿真学报,2008,20(9):2303-2306.
ZHENG Jing-hao,GAO Xiao-guang,CHEN Chong.Target recognition in air to air combat based on elastic variable structure discrete dynamic Bayesian networks[J]. Journal of System Simulation,2008,20(9):2303-2306.
[5] 吴天俣,张安,李亮.基于离散模糊动态贝叶斯网络的空战威胁估计[J].火力指挥与控制,2009,34(10):56-59.
WU Tian-yu,ZHANG An,LI Liang. Study on the threat a ssessment in air combat based on discrete fuzzy dynam- ic Bayesian Network[J].Fire Control and Command Control, 2009,34(10):56-59.
[6] 任佳,高晓光,茹伟.目标数据缺失下离散动态贝叶斯网络的参数学习[J]. 系统工程与电子技术,2011,33(8):18851890.
REN Jia,GAO Xiao-guang,RU Wei. Parameter learning of discrete dynamic Bayesian network with missing target data[J]. Systems Engineering and Electronics, 2011,33(8):1885-1890.
[7] 柴慧敏,王宝树.动态贝叶斯网络在战术态势估计中的应用[J].计算机应用研究,2011,28(6):2151-2160.
CHAI Hui-min,WANG Bao-shu. Application of dynam-ic Bayesian networks in tactical situation assessment[J]. Application Research of Computers, 2011,28(6): 2151-2160.
[8] 杨健,高文逸,刘军.一种基于贝叶斯网络的威胁估计方法[J].解放军理工大学学报:自然科学版,2010,11(1):43-48.
YANG Jian,GAO Wen-yi,LIU Jun. Threat assessment method based on bayesian network[J].Journal of PLA University Science and Technology:National Science Edition, 2010,11(1):43-48.
[9] OXENHAM M,CUTLER P. Accommodating obstacle avoidance in the weapons allocation problem for tactical air defense[C]∥The 9th International Conference on Information Fusion.Beijing:IEEE,2006.
[10] 沈薇薇,肖兵,丁文飞,等.动态贝叶斯网络在态势评估中的应用[J].空军雷达学院学报,2010,24(6):414-417.
SHEN Wei-wei,XIAO Bing,DING Wen-fei,et al. Application of dynamic bayesian network to situation assessment[J].Journal of Air Force Radar Academy, 2010,24(6):414-417.

[1] CUI Guang-mang, ZHAO Ju-feng,FENG Hua-jun, XU Zhi-hai,LI Qi, CHEN Yue-ting. Construction of fast simulation model for degraded image by inhomogeneous medium[J]. J4, 2014, 48(2): 303-311.
[2] ZHANG Tian-yu, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Sharpness metric based on histogram of strong edge width[J]. J4, 2014, 48(2): 312-320.
[3] LIU Zhong, CHEN Wei-hai, WU Xing-ming, ZOU Yu-hua, WANG Jian-hua. Salient region detection based on stereo vision[J]. J4, 2014, 48(2): 354-359.
[4] WANG Xiang-bing,TONG Shui-guang,ZHONG Wei,ZHANG Jian. Study on  scheme design technique for hydraulic excavator's structure performance based on extension reuse[J]. J4, 2013, 47(11): 1992-2002.
[5] WANG Jin, LU Guo-dong, ZHANG Yun-long. Quantification-I theory based IGA and its application[J]. J4, 2013, 47(10): 1697-1704.
[6] LIU Yu, WANG Guo-jin. Designing  developable surface pencil through  given curve as its common asymptotic curve[J]. J4, 2013, 47(7): 1246-1252.
[7] HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method 
[J]. J4, 2013, 47(7): 1258-1266.
[8] WU Jin-liang, HUANG Hai-bin, LIU Li-gang. Texture details preserving seamless image composition[J]. J4, 2013, 47(6): 951-956.
[9] ZHU Fan , LI Yue, JIANG Kai, YE Shu-ming, ZHENG Xiao-xiang. Decoding of rat’s primary motor cortex by partial least square[J]. J4, 2013, 47(5): 901-905.
[10] CHEN Xiao-hong,WANG Wei-dong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. J4, 2013, 47(5): 853-859.
[11] WU Ning, CHEN Qiu-xiao, ZHOU Ling, WAN Li. Multi-level method of optimizing vector graphs converted from remote sensing images[J]. J4, 2013, 47(4): 581-587.
[12] JI Yu, SHEN Ji-zhong, SHI Jin-he. Automatic ocular artifact removal based on blind source separation[J]. J4, 2013, 47(3): 415-421.
[13] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. J4, 2013, 47(3): 422-430.
[14] TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
[J]. J4, 2013, 47(1): 122-130.
[15] LIU Fang, SUN Yun, YANG Geng, LIN Hai. Visualization of social network based on particle swarm optimization[J]. J4, 2013, 47(1): 37-43.