Please wait a minute...
J4  2013, Vol. 47 Issue (1): 37-43    DOI: 10.3785/j.issn.1008-973X.2013.01.006
    
Visualization of social network based on particle swarm optimization
LIU Fang, SUN Yun, YANG Geng, LIN Hai
State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A visualization method based on particle swarm optimization (PSO) for microblogging data was proposed in order to assist users to reveal and analyze the relationship among microblogging users more clearly and quickly. According to their influence, users were divided into n layers in order to represent how much the user can influence the dissemination of information in the network. Users were divided into subgroups based on their focus relationship; the objective function was designed based on the PSO algorithm in order to meet the layout requirements of social networks. Straight lines were replaced with curve lines in order to further enhance the visualization results and reduce the visual complexity.  Transfer function and interaction techniques were employed. Experimental results showed that the proposed method formed a clear visual result and provided a better analysis of relationship among the microblogging users.



Published: 01 January 2013
CLC:  TP 391  
Cite this article:

LIU Fang, SUN Yun, YANG Geng, LIN Hai. Visualization of social network based on particle swarm optimization. J4, 2013, 47(1): 37-43.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.01.006     OR     http://www.zjujournals.com/eng/Y2013/V47/I1/37


基于粒子群优化算法的社交网络可视化

为了使用户快捷、清晰地发现及研究微博用户之间的关系,提出基于粒子群优化(PSO)算法的微博数据可视化方法.根据用户在微博中的影响力将用户分为n层,以此来表示用户在网络中对信息的传播影响力的等级.基于数据的关联关系对数据进行子群划分;基于粒子群优化算法,设计目标函数,使粒子群优化算法适应社交网络的布局要求.为了进一步增强可视化效果,降低视觉复杂度,采用曲线代替直线,应用传输函数设置不透明度以及交互的可视化技术.实验结果表明,该方法可以形成清晰的可视化结果,以便更好地分析微博用户之间的关系.

[1] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world-networks [J]. Nature, 1998, 393(6): 440-442.
[2] BARABASI A L, BONABEAU E. Scale-free networks [J]. Scientific American, 2003, 288(5): 50-59.
[3] LONG B,ZHANG M,WU X,et al. Spectral clustering for multitype relational data [C]∥ Proceedings of the 23rd International Conference on Machine Learning. New York: ACM,2006: 585-592.
[4] LI T, ANAND S S. DIVA a variancebased clustering approach for multi-type relational data [C]∥ Proceedings of the 16th ACM Conference on Information and Knowledge Management CIKM. New York: ACM, 2007: 147-156.
[5] YIN X X, HAN J W, PHILIP S Y. CrossClus: user-guided multi-relational clustering [J]. Data Mining Knowledge Discovery, 2007, 15: 321-348.
[6] CHENG Y, HUANG S B, LV T Y, et al. A hierarchical multi-relational clustering algorithm based on modal logic [C]∥ 2011 4th International Congress on Image and Signal Processing (CISP). Los Alamitos: IEEE, 2011: 2459-2463.
[7] HERMAN I, MELANCON G, MARSHALLl M S. Graph visualization and navigation in information visualization: a survey [J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1): 24-43.
[8] BEN M, EPPSTEIN D. Worst-case bounds for subadditive geometric graphs [C]∥ Proceedings of the 9th ACM Symposium on Computational Geometry. New York: ACM,1993: 183-188.
[9] NGUYEN Q V, HUANG M L. A space-optimized tree visualization [C]∥ IEEE Symposium on Information Visualization. Los Alamitos: IEEE, 2002:85-92.
[10] JOHNSON B, SHNEIDERMAN B. TreeMaps: a spacefilling approach to the visualization of hierarchical information [C]∥Proceedings of the Visualization 91. Los Alamitos: IEEE, 1991: 284-291.
[11] ROBERTSON G G, MACKINLAY J D, CARD S K. Cone trees: animated 3D visualizations of hierarchical information [C]∥ Proceedings of CHI 91 the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1991: 189-194.
[12] SINDRE G, GULLA B, JOKSTAD H G. Onion graphs: aesthetics and layout [C]∥ Proceedings of IEEE Symposium on Visual Languages. Los Alamitos: IEEE, 1993: 287-291.
[13] EADES P. A heuristic for graph drawing [J]. Congressus Nutnerantiunt, 1984, 42(11): 149-160.
[14] KAMADA T, KAWAI S. An algorithm for drawing general undirected graphs [J]. Information Processing Letters (Elsevier), 1989, 31(1): 7-15.
[15] FRUCHTERMAN T M J, REINGLOD E M. Graph drawing by forcedirected placement [J]. Software-Practice and Experience (Wiley), 1991, 21(11):1129-1164.
[16] CHAN D S M, CHUA K S, LECKIE C, et al. Visualization of powerlaw network topologies [C]∥ Proceedings of the 11th IEEE International Conference on Networks. Los Alamitos: IEEE, 2003: 69-74.
[17] 吴鹏. 基于本体论的社会关系网络信息可视化研究[D]. 长沙:国防科学技术大学,2011.
WU Peng. Research on Ontology based information visualization of social network \
[D\]. Changsha: National University of Defense Technology, 2011.
[18] HUA J, HUANG M L, HUANG W D, et al. Forcedirected graph visualization with pre-positioning: improving convergence time and quality of layout [C]∥2012 16th International Conference on Information Visualization (IV). Los Alamitos: IEEE, 2012: 124-129.
[19] TAKAYUKI I, CHRIS M, MA K L, et al. A hybrid space-filling and force-directed layout method for visualizing multiplecategory graphs [C]∥Proceedings of IEEE Pacific Visualization 2009 Symposium. Los Alamitos: IEEE, 2009: 121-128.
[20] HENRY N, FEKETE J D. MatrixExplorer: a dual-representation system to explore social networks [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 677-684.
[21] HENRY N, FEKETE J D, MCGUFFIN M J. NodeTrix: a hybrid visualization of social networks [J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1302-1309.

[1] ZHAO Jian-jun, WANG Yi, YANG Li-bin. Threat assessment method based on time series forecast[J]. J4, 2014, 48(3): 398-403.
[2] ZHANG Tian-yu, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Sharpness metric based on histogram of strong edge width[J]. J4, 2014, 48(2): 312-320.
[3] LIU Zhong, CHEN Wei-hai, WU Xing-ming, ZOU Yu-hua, WANG Jian-hua. Salient region detection based on stereo vision[J]. J4, 2014, 48(2): 354-359.
[4] CUI Guang-mang, ZHAO Ju-feng,FENG Hua-jun, XU Zhi-hai,LI Qi, CHEN Yue-ting. Construction of fast simulation model for degraded image by inhomogeneous medium[J]. J4, 2014, 48(2): 303-311.
[5] WANG Xiang-bing,TONG Shui-guang,ZHONG Wei,ZHANG Jian. Study on  scheme design technique for hydraulic excavator's structure performance based on extension reuse[J]. J4, 2013, 47(11): 1992-2002.
[6] WANG Jin, LU Guo-dong, ZHANG Yun-long. Quantification-I theory based IGA and its application[J]. J4, 2013, 47(10): 1697-1704.
[7] LIU Yu, WANG Guo-jin. Designing  developable surface pencil through  given curve as its common asymptotic curve[J]. J4, 2013, 47(7): 1246-1252.
[8] HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method 
[J]. J4, 2013, 47(7): 1258-1266.
[9] WU Jin-liang, HUANG Hai-bin, LIU Li-gang. Texture details preserving seamless image composition[J]. J4, 2013, 47(6): 951-956.
[10] ZHU Fan , LI Yue, JIANG Kai, YE Shu-ming, ZHENG Xiao-xiang. Decoding of rat’s primary motor cortex by partial least square[J]. J4, 2013, 47(5): 901-905.
[11] CHEN Xiao-hong,WANG Wei-dong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. J4, 2013, 47(5): 853-859.
[12] WU Ning, CHEN Qiu-xiao, ZHOU Ling, WAN Li. Multi-level method of optimizing vector graphs converted from remote sensing images[J]. J4, 2013, 47(4): 581-587.
[13] JI Yu, SHEN Ji-zhong, SHI Jin-he. Automatic ocular artifact removal based on blind source separation[J]. J4, 2013, 47(3): 415-421.
[14] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. J4, 2013, 47(3): 422-430.
[15] TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
[J]. J4, 2013, 47(1): 122-130.