Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2355-2363    DOI: 10.3785/j.issn.1008-973X.2024.11.017
    
Structural design and experimental analysis of new UHPC-NC composite bent cap
Cijun LIU1(),Lifeng LI2,*(),Xudong SHAO2,Tao CHEN1,Guanhua ZHANG3,Jiawei WANG3,Huazhen YANG4,Yalong ZHAO4
1. Ningbo High-Grade Highway Construction Management Center, Ningbo 315192, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
3. Liaoning Provincial Communication Planning and Design Institute Limited Company, Shenyang 110111, China
4. China Highway Engineering Consulting Corporation, Beijing 100089, China
Download: HTML     PDF(2785KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new composite bent cap consisting of a shell made of steel plate and ultra-high-performance concrete (UHPC) and cast-in-place core normal concrete (NC) was proposed in order to realize the assembly and rapid construction of ultra-large-scale bent cap for urban viaducts or highway reconstruction and expansion projects. Parametric analysis of different UHPC and steel plate thickness was conducted in order to analyze the influence of the thickness of UHPC and steel mold plate on its stress performance. Results showed that the stiffness of the shell was affected by the thickness of UHPC and steel plate and their ratio together under the action of self-weight. The thicker the UHPC and steel plate are, the better the stress performance of the shell is, but the economy will be reduced when tensioning prestress and casting concrete. It is recommended to use UHPC thickness of 70 mm and steel plate thickness of 6 mm. A piece of 1∶2.5 scaled-down model was designed and static loading test was conducted in order to verify the feasibility and safety of this scheme. Results show that the new UHPC-NC composite bent cap has good force performance and high safety reserve, which can provide reference for the assembly construction of bent cap.



Key wordsbent cap      assembly construction      ultra-high-performance concrete (UHPC)      scheme design     
Received: 06 September 2023      Published: 23 October 2024
CLC:  TU 398  
Fund:  国家自然科学基金资助项目(51978257, 52278176).
Corresponding Authors: Lifeng LI     E-mail: 1171130497@qq.com;lilifeng@hnu.edu.cn
Cite this article:

Cijun LIU,Lifeng LI,Xudong SHAO,Tao CHEN,Guanhua ZHANG,Jiawei WANG,Huazhen YANG,Yalong ZHAO. Structural design and experimental analysis of new UHPC-NC composite bent cap. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2355-2363.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2355


新型UHPC-NC组合盖梁的结构设计与试验分析

为了实现城市高架桥或高速公路改扩建工程超大规模盖梁的装配化、快速化施工,提出由钢板和超高性能混凝土(UHPC)制作的外壳及现浇核心混凝土(NC)组成的新型UHPC-NC组合盖梁.为了探究外壳UHPC和钢模板厚度对受力性能的影响,对不同UHPC和钢板厚度进行参数分析. 分析结果表明,在自重作用下,外壳的刚度受UHPC和钢板厚度及其比例的共同影响. 当张拉预应力和浇筑混凝土时,UHPC和钢板越厚,外壳的受力性能越好,但是经济性会降低,建议采用UHPC厚70 mm,钢板厚6 mm的方案. 为了验证该方案的可行性和安全性,设计1∶2.5的缩尺模型,开展静力加载试验. 结果表明,新型UHPC-NC组合盖梁的受力性能好,安全储备较高,可以为盖梁的装配化施工提供参考.


关键词: 盖梁,  装配化施工,  超高性能混凝土(UHPC),  方案设计 
Fig.1 Schematic diagram of UHPC-NC combined bent cap
Fig.2 Overall layout of bent cap
Fig.3 Rod system model of UHPC-NC combined bent cap
Fig.4 Stress on upper edge of bent cap shell
方案项目数量综合单价/元小计/元总价/元
原普通混凝土盖梁C50混凝土215.0 m31350290 250786 837
HRB400钢筋33.0 t6500214 500
$\varPhi $15.24 mm钢绞线11.2 t12500140 000
地基处理119 m227332 487
支架1370 m380109 600
组合盖梁UHPC23.0 m310000230 000767 075
C50混凝土150.5 m31350203 175
Q355钢材13.9 t8500118 150
HRB400钢筋9.5 t650061 750
$\varPhi $15.24 mm钢绞线11.2 t12500140 000
运输吊装(90 t)11400014 000
Tab.1 Economic analysis table of bent cap
Fig.5 Section layout of bent cap
Fig.6 Beam end displacement of bent cap shell
Fig.7 Stress on upper and lower edges of bent cap shell
Fig.8 Cross-sectional type center position of bent cap shell
Fig.9 Core concrete pressure on UHPC shell
Fig.10 Finite element model of B70-6
Fig.11 Spatial analysis result of B70-6
Fig.12 Spatial analysis result of bent cap shell for each scheme
Fig.13 Economic analysis result of bent cap for each scheme
Fig.14 Loading arrangement of model beam
Fig.15 Loading test site of model beam
Fig.16 Load-deflection curve of load point
Fig.17 Distribution of typical crack
Fig.18 Load- strain curve of main reinforcement
类型Mu/(kN·m)Vu/kN
设计值9 495.13 151.7
实验值12 285.54 459.0
比值1.291.41
Tab.2 Comparison of carrying capacity of root section of bent cap
[1]   肖绪文, 曹志伟, 刘星, 等 我国建筑装配化发展的现状、问题与对策[J]. 建筑结构, 2019, 49 (19): 1- 4
XIAO Xuwen, CAO Zhiwei, LIU Xing, et al Status, problems and countermeasures of prefabricated buildings in China[J]. Building Structure, 2019, 49 (19): 1- 4
[2]   项贻强, 竺盛, 赵阳, 等 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31 (12): 1- 27
XIANG Yiqiang, ZHU Sheng, ZHAO Yang, et al Research and development on accelerated bridge construction technology[J]. China Journal of Highway and Transport, 2018, 31 (12): 1- 27
[3]   李中南, 朱海波, 赵阳, 等 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报: 工学版, 2021, 55 (1): 46- 54
LI Zhongnan, ZHU Haibo, ZHAO Yang, et al Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 46- 54
[4]   AZMEE N M, SHAFIQ N. Ultra-high performance concrete: from fundamental to applications [J]. Case Studies in Construction Materials , 2018, 9(12): 1-21.
[5]   刘路明, 方志, 刘福财, 等 室内环境下UHPC的收缩徐变试验和预测[J]. 中国公路学报, 2021, 34 (8): 35- 44
LIU Luming, FANG Zhi, LIU Fucai, et al Experimental study on the shrinkage and creep of UHPC in indoor environments[J]. China Journal of Highway and Transport, 2021, 34 (8): 35- 44
[6]   BAJABER M A, HAKEEM I Y UHPC evolution, development, and utilization in construction: a review[J]. Journal of Materials Research and Technology, 2021, 10 (1): 1058- 1074
[7]   邵旭东, 樊伟, 黄政宇, 等 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54 (1): 1- 13
SHAO Xudong, FAN Wei, HUANG Zhengyu, et al Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54 (1): 1- 13
[8]   邵旭东, 蔡文涌, 曹君辉, 等 型钢-UHPC轻型组合桥面板及其抗弯性能研究[J]. 土木工程学报, 2024, 57 (6): 152- 168
SHAO Xudong, CAI Wenyong, CAO Junhui, et al Research on flexural performance of section steel-UHPC lightweight composite bridge deck[J]. China Civil Engineering Journal, 2024, 57 (6): 152- 168
[9]   邵旭东, 邵宗暄, 怀臣子, 等 UHPC矮肋桥面板抗弯性能研究[J]. 湖南大学学报: 自然科学版, 2022, 49 (11): 33- 44
SHAO Xudong, SHAO Zongxuan, HUAI Chenzi, et al Research on flexural performance of UHPC lowly ribbed deck panel[J]. Journal of Hunan University: Natural Sciences, 2022, 49 (11): 33- 44
[10]   李小鹏. 装配式盖梁拼装施工技术研究[J]. 科技与创新, 2023, 222(6): 68-70.
LI Xiaopeng. Research on assembling construction technology of assembled [J]. Science and Technology and Innovation , 2023, 222(6): 68-70.
[11]   何晓阳, 项贻强, 邢骋 混凝土桥梁下部结构病害分析与加固[J]. 重庆交通大学学报: 自然科学版, 2013, 32 (Suppl.1): 807- 811
HE Xiaoyang, XIANG Yiqiang, XING Cheng Disease analysis and reinforcement of concrete bridge substructure[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32 (Suppl.1): 807- 811
[12]   李立峰, 唐金良, 胡方健, 等 全预制轻型预应力UHPC薄壁盖梁抗剪性能试验[J]. 中国公路学报, 2020, 33 (8): 144- 158
LI Lifeng, TANG Jinliang, HU Fangjian, et al Experimental on shear behavior of prefabricated light weight thin-walled UHPC bent cap[J]. China Journal of Highway and Transport, 2020, 33 (8): 144- 158
[13]   叶萌, 姚志立 全预制轻型UHPC盖梁设计方案及模型试验[J]. 公路工程, 2021, 46 (4): 84- 90
YE Meng, YAO Zhili Experimental study on shear behavior of prestressed UHPC-T beam[J]. Highway Engineering, 2021, 46 (4): 84- 90
[14]   YE Meng, LI Lifeng, HU Fangjian, et al UHPC-based precast large-cantilevered thin-walled bent caps: design and experiments[J]. Engineering Structures, 2022, 272: 114909
doi: 10.1016/j.engstruct.2022.114909
[15]   CHUNG C H, LEE J H, KWON S H Proposal of a new partially precast pier cap system and experimental verification of its structural performance[J]. KSCE Journal of Civil Engineering, 2018, 22 (7): 2362- 2370
doi: 10.1007/s12205-017-1268-4
[16]   李嘉维, 夏樟华, 孙明松, 等 UHPC模壳-RC叠合盖梁受力性能试验[J]. 中国公路学报, 2021, 34 (8): 157- 167
LI Jiawei, XIA Zhanghua, SUN Mingsong, et al Experimental study on mechanical performance of UHPC formwork-RC composite cap beam[J]. China Journal of Highway and Transport, 2021, 34 (8): 157- 167
[17]   孙明松, 李嘉维, 夏坚, 等 半预制UHPC外壳叠合盖梁试设计研究[J]. 水利与建筑工程学报, 2020, 18 (4): 105- 110
SUN Mingsong, LI Jiawei, XIA Jian, et al Trial-design of semi-prefabricated UHPC shell composite cap beam[J]. Journal of Water Resources and Architectural Engineering, 2020, 18 (4): 105- 110
[18]   李长春, 卓卫东, 孙作轩, 等 牛腿式接缝分段预制拼装盖梁的受力性能[J]. 哈尔滨工程大学学报, 2023, 44 (8): 1328- 1335
LI Changchun, ZHUO Weidong, SUN Zuoxuan, et al Static behavior of segmental precast assembled cap beam with corbel joints[J]. Journal of Harbin Engineering University, 2023, 44 (8): 1328- 1335
[19]   中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362-2018[S]. 北京: 人民交通出版社, 2015.
[20]   AFNOR. National addition to Eurocode 2-design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC): NF P 18-710 [S]. Paris: Association Francaise de Normalisation, 2016: 32-54.
[21]   中华人民共和国交通运输部. 公路钢结构桥梁设计规范: JTG-D64—2015 [S]. 北京: 人民交通出版社, 2015.
[22]   AL-OSTA M A, ISA M N, BALUCH M H, et al Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134 (1): 279- 296
[1] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[2] WANG Zi li, ZHANG Shu you, QIU Le miao. Energy consumption analysis of plastic injection equipment plastic design based on confidence intervals[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 328-335.
[3] ZHOU Yi, ZHONG Wei, XIE Jin-fang, TONG Shui-guang. Research of scheme design model for process-formed
mechanical system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1526-1533.
[4] FENG Yi-xiong, SONG Xuan, TAN Jian-rong, DING Li-ping. K-WFA based kinematic scheme design solving of mechanical product[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 515-523.