Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2347-2354    DOI: 10.3785/j.issn.1008-973X.2024.11.016
    
Experimental investigation on local scour of bucket foundation considering exposed height and hydraulic condition
Peng YUE1,2(),Ben HE3,Yujie LI1,2,Yongqiang ZHU4,Qiang XU2,5,*(),Zhen GUO2,4
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. Hainan Institute, Zhejiang University, Sanya 572025, China
3. Key Laboratory of Far-shore Wind Power Technology of Zhejiang Province, Hangzhou 310058, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
5. Ocean Academy, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(2377KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Wave-current flume experiments were conducted to analyze the scour temporal evolution, scour hole pattern, scour depth, and equilibrium scour time of the bucket foundation under various conditions, including different exposed heights and hydraulic conditions aiming at the low placement rate of the suction-bucket foundation, the issue of prominent seabed exposed bucket roof during suction penetration and the foundation’s susceptibility to local scouring. Results showed that the scouring phenomenon was symmetrically distributed along the flow direction under current-only conditions. The front and back of the foundation remained unaffected by penetration. The maximum scour depth occured in front of the foundation. The maximum scour depth reached one-third of the foundation burial depth when the ratio of exposed height to cylinder diameter was 0.1 and the flow velocity was 0.3 m/s. The sand lifting capacity was enhanced, leading to the formation of sand ripple terrain around the bucket foundation when combined waves and currents were present. The scouring and deposition remained symmetrically distributed despite these changes. The maximum scour pit depth exhibited regular fluctuations after reaching equilibrium. Both the maximum scour depth and the ultimate equilibrium scour time increased with increasing exposed height. A calculation formula for determining the ultimate scour equilibrium time applicable to different exposed heights was proposed.



Key wordssuction bucket foundation      local scour      combined wave and current      exposed height      scour characteristic      equilibrium scour time     
Received: 01 September 2023      Published: 23 October 2024
CLC:  TU 475  
Fund:  国家自然科学基金资助项目(52238008);浙江省自然杰出青年项目(LR22E080005);中央高校基本科研业务费专项资金资助项目(226-2023-00090).
Corresponding Authors: Qiang XU     E-mail: yuepeng@zju.edu.cn;05clkxxq@zju.edu.cn
Cite this article:

Peng YUE,Ben HE,Yujie LI,Yongqiang ZHU,Qiang XU,Zhen GUO. Experimental investigation on local scour of bucket foundation considering exposed height and hydraulic condition. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2347-2354.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2347


考虑暴露高度和波流条件的筒基冲刷试验研究

针对吸力式筒型基础负压沉贯过程中到位率低、筒顶暴露突出海床,基础易出现局部冲刷的问题,开展大断面波流水槽局部冲刷试验,研究不同暴露高度和波流条件下筒型基础的局部冲刷发展过程、最终冲刷形态及深度、冲刷平衡时间等特征规律. 研究结果表明,纯流条件下,筒基周围冲淤沿来流方向对称分布,前后冲刷坑不贯通,最大冲刷深度往往出现在筒前. 当暴露高度与筒径的比值为0.1,流速为0.3 m/s时,最大冲刷深度可达基础埋深的1/3. 波流耦合作用时,掀砂能力增强,筒基周围出现砂纹地形,冲淤仍对称分布,最大冲刷坑深度达到冲淤平衡后会出现规律性波动. 最大冲刷深度和极限冲刷平衡时间随着筒型基础暴露高度的增大而增加,提出考虑暴露高度的筒基极限冲刷平衡时间计算公式.


关键词: 吸力筒基础,  局部冲刷,  波流耦合,  暴露高度,  冲刷特征,  冲刷平衡时间 
Fig.1 Schematic drawing of wave-current flume used in present test
Fig.2 Local scour test instrument for bucket foundation
相似准则相似比尺计算值相似比尺
重力相似几何比尺$ {{ \lambda }}_{\text{l}} $=$ {{ \lambda }}_{\text{h}} $160
流速比尺$ {{ \lambda }}_{\text{u}} $=$ \sqrt{{{ \lambda }}_{\text{h}}} $12.65
时间比尺$ {{ \lambda }}_{\text{t}} $=$ {{ \lambda }}_{\text{l}} $/$ {{ \lambda }}_{\text{u}} $12.65
Tab.1 Local scour test similarity scale for bucket foundation
参数原尺度/m缩尺/cm
吸力筒直径32.020.0
吸力筒高度10.06.5
上部塔筒直径5.54.0
水深48.030.0
Tab.2 Dimension of test prototype and model
Fig.3 Particle size distribution curve of sand used in present test
Fig.4 Flow velocity distribution curve of flume section
Fig.5 Exposed height of suction bucket foundation model
序号H/cmh/cmUmean/(m·s?1)Hwave/cmT/st/h
T-13000.2006
T-23000.3002
T-33000.3512
U-1300.50.2006
U-23010.2006
U-33020.2006
U-4300.50.3002
U-53010.3002
U-63020.3002
U-7300.50.3512
U-8300.50.31012
U-93010.3512
U-103010.31012
Tab.3 Setting of local scour test condition parameter for bucket foundation
Fig.6 Scour temporal evolution under different hydraulic condition
Fig.7 Scour pattern under current-only clear-water condition
Fig.8 Scour pattern under current-only live-bed condition
Fig.9 Scour pattern under combined wave and current condition
Fig.10 Curve of scour temporal evolution
Fig.11 Sand transport rate per unit width around bucket foundation model after scouring
Fig.12 Relationship between maximum scour hole pattern and exposed height
Fig.13 Relationship between ultimate equilibrium scour time and exposed height
[1]   WHITTLE A J, GERMAIN J T, CAUBLE D F. Behavior of miniature suction caissons in clay [C]// Offshore Site Investigation and Foundation Behaviour: New Frontiers - Proceedings of an International Conference . London: [s. n.], 1998: 98-279.
[2]   TJELTA T I. Suction piles: their position and applications today [C] // Proceedings of the 11th International Offshore and Polar Engineering Conference . Stavanger: [s. n.], 2001: 1-6.
[3]   RAUCH A F, OLSON R E, LUKE A M, et al. Measured response during laboratory installation of suction caissons [C]// Proceedings of the 13th International Offshore and Polar Engineering Conference . Honolulu: [s. n.], 2003: 780-787.
[4]   SENPERE D, AUVERGNE G A. Suction anchor piles-a proven alternative to driving or drilling [C] // Proceedings of 14th Annual Offshore Technology Conference . Houston: [s. n.], 1982: 483-493.
[5]   王胜永. 桶型基础平台在渤海边际油田开发中的应用研究[D]. 大连: 大连理工大学, 2008.
WANG Shengyong. Application study of bucket foundations platform in developing marginal oilfield in Bohai Sea [D]. Dalian: Dalian University of Technology, 2008.
[6]   于通顺, 张舒博, 章誉天, 等 复合筒基细砂地基波流冲刷过程及最大冲刷深度研究[J]. 太阳能学报, 2021, 42 (8): 434- 439
YU Tongshun, ZHANG Shubo, ZHANG Yutian, et al Study on scour process and maximum scour depth of fine sand composite bucket foundation induced by wave and current action[J]. Acta Energiae Solaris Sinica, 2021, 42 (8): 434- 439
[7]   于通顺, 练继建, 齐越, 等 复合筒型风电基础单向流局部冲刷试验研究[J]. 岩土力学, 2015, 36 (4): 1015- 1020
YU Tongshun, LIAN Jijian, QI Yue, et al Experimental study of the local scour around the composite bucket foundations of wind turbines under unidirectional current[J]. Rock and Soil Mechanics, 2015, 36 (4): 1015- 1020
[8]   STROESCU I E, FRIGAARD P, FEJERSKOV M Scour development around bucket foundations[J]. International Journal of Offshore and Polar Engineering, 2016, 26 (1): 57- 64
[9]   LARSEN B J. Scour and scour protection for bucket foundations [D]. Aalborg: Aalborg University, 2005.
[10]   周松望. 桶形基础的负压沉贯及其周围土体对波浪作用的响应特征[D]. 青岛: 中国海洋大学, 2004.
ZHOU Songwang. Suction penetration of bucket foundation and response characteristic of silt to wave function [D]. Qingdao: Ocean University of China, 2004.
[11]   刘茜茜, 陈旭光, 冯涛, 等 波浪作用下筒型基础冲刷特性试验研究[J]. 海洋工程, 2019, 37 (6): 104- 113
LIU Qianqian, CHEN Xuguang, FENG Tao, et al Experimental study on scouring characteristics of bucket foundation in wave[J]. The Ocean Engineering, 2019, 37 (6): 104- 113
[12]   LIAN J J, LI J L, GUO Y H, et al Numerical study on local scour characteristics of multi-bucket jacket foundation considering exposed height[J]. Applied Ocean Research, 2022, 121 (2): 103092
[13]   任灏, 刘博, 刘晓建, 等 阳江沙扒海上风电三桶吸力桩基础局部冲刷试验研究[J]. 人民珠江, 2022, 43 (5): 107- 113
REN Hao, LIU Bo, LIU Xiaojian, et al Study on local scour of suction foundations at offshore wind farms in Shapa of Yangjiang[J]. Pearl River, 2022, 43 (5): 107- 113
doi: 10.3969/j.issn.1001-9235.2022.05.016
[14]   马丽丽. 跨海桥梁桩基础局部冲刷演化特征试验研究[D]. 杭州: 浙江大学, 2018.
MA Lili. Experimental investigation on scour development around the pile foundation of the sea crossing bridge [D]. Hangzhou: Zhejiang University, 2018.
[15]   GRAF W H, ISTIARTO I Flow pattern in the scour hole around a cylinder[J]. Journal of Hydraulic Research, 2002, 40 (1): 13- 20
doi: 10.1080/00221680209499869
[16]   王兆耀, 刘红军, 杨奇, 等 波流作用下大直径单桩的局部冲刷特征分析[J]. 岩土力学, 2021, 42 (4): 1178- 1185
WANG Zhaoyao, LIU Hongjun, YANG Qi, et al Local scour of large diameter monopile under combined waves and currents[J]. Rock and Soil Mechanics, 2021, 42 (4): 1178- 1185
[17]   GUO Z, JENG D S, ZHAO H Y, et al Effect of seepage flow on sediment incipient motion around a free spanning pipeline[J]. Coastal Engineering, 2019, 143 (GT9): 50- 62
[18]   LI Y J, GUO Z, WANG L Z, et al An innovative eco-friendly method for scour protection around monopile foundation[J]. Applied Ocean Research, 2022, 123 (1): 103177
[1] SUN Zhi-lin, NI Xiao-jing, XU Dan. Physics of flow and local scour depth around spur dikes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2189-2196.
[2] LIU Ying-yi, LU Lin, ZHENG Miao-zi, HUANG Jun,TENG Bin. Analysis of seabed stability and local scour around
submarine pipelines under waves and current
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1135-1142.