Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 579-588    DOI: 10.3785/j.issn.1008-973X.2024.03.015
    
Model test on influence of initial stress on blast wave propagation in dry sand foundation
Jiahao CHEN1,2(),Junchao LI1,2,*(),Bin ZHU1,2,Qiang LU3,Yubing WANG1,2,Longhua GUAN1,2,Fengkui ZHAO1,2
1. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
Download: HTML     PDF(1996KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Several sets of blast model tests were conducted on dry sandy foundation with both normal gravity and supergravity, in order to investigate the effects of initial stress of sandy soil on the propagation characteristics of blast waves, such as peak pressure, rise time, propagation velocity, and dynamic unloading of initial stress. Experimental results showed that the initial self-weight stress inhibited the growth of the peak pressure of the blast wave in the near zone and had little effect on the far zone. The increase of initial stress made the rise time of the blast wave longer and more susceptible to attenuation from the shock wave into the elastic-plastic wave, and the propagation velocity of the blast wave was increased. The supergravity test could simulate the process of dynamic unloading caused by the blast load by restoring the original self-weight stress of the sandy soil, forming coupling wave of explosion pressure and soil initial stress dynamic unloading tensile stress. The dynamic unloading tensile stress lasted longer. The dynamic unloading tensile stress specific impulse magnitude gradually became the main part of the explosion energy with the increase of propagation distance, as compared to the specific impulse magnitude of the blast pressure. The damage effect caused by the dynamic unloading tensile stress specific impulse magnitude cannot be ignored.



Key wordsunderground explosion      centrifugal model test      dry sand      blast wave velocity      dynamic stress unloading     
Received: 09 March 2023      Published: 05 March 2024
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(51988101).
Corresponding Authors: Junchao LI     E-mail: 22012178@zju.edu.cn;lijunchao@zju.edu.cn
Cite this article:

Jiahao CHEN,Junchao LI,Bin ZHU,Qiang LU,Yubing WANG,Longhua GUAN,Fengkui ZHAO. Model test on influence of initial stress on blast wave propagation in dry sand foundation. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 579-588.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.015     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/579


干砂地基初始应力对爆炸波传播影响的模型试验

为了研究砂土地基初始应力对爆炸波压力峰值、上升时间、传播速度和初始应力动态卸载等传播规律的影响,开展多组干砂地基常重力和超重力爆炸模型试验. 试验结果表明,初始自重应力会抑制爆炸波近区压力峰值的增长,而对远区的影响较小. 初始应力的增加使得爆炸波上升时间更长,更易由冲击波衰减为弹塑性波,并使得爆炸波波速增大. 超重力试验通过还原砂土地基的原型自重应力,能够模拟爆炸荷载诱发砂土地基初始应力动态卸载的过程,形成爆炸压力和土体初始应力动态卸载拉应力的耦合波,动态卸载拉应力持续时间更长. 与爆炸波压应力的比冲量相比,初始应力动态卸载拉应力的比冲量随着传播距离的增加逐渐成为爆炸能量的主要部分,其产生的破坏作用不可忽视.


关键词: 地下爆炸,  离心模型试验,  干砂,  爆炸波波速,  应力动态卸载 
Fig.1 Equivalent circuit of blast process
Fig.2 Particle grading of ISO standard sand
Fig.3 Absorbing materials for model box
试验
编号
Gρ/(kg·m?3Dr/%W/gH/m(H/W1/3)/
(m·kg?1/3
σz/kPad/m
爆源平面爆源下方
GE-11g180372.80.80.101.081.770.08、0.10、0.12、
0.14、0.19、0.25
0.08、0.12、
0.16、0.22
GE-21g179370.30.80.313.335.450.08、0.10、0.12、0.14、
0.16、0.19、0.22、0.25
0.10、0.16、
0.22
CE-1100g180072.10.80.101.08176.400.08、0.10、0.12、
0.14、0.19、0.25
0.08、0.12、
0.16、0.22
CE-2100g181676.10.80.313.33551.700.08、0.10、0.12、0.14、
0.16、0.19、0.22、0.25
0.10、0.16、
0.22
Tab.1 Test condition of explosion physical model
Fig.4 Location of soil pressure sensor
Fig.5 Throwing process of blast crater
Fig.6 Time history curve of blast soil pressure
Fig.7 Attenuation law of blast peak pressure with proportional distance
Fig.8 Arrival time of wavefront and peak pressure
Fig.9 Relationship between rise time of blast peak pressure and propagation distance
Fig.10 Variation of compressive stress with relative volume
Fig.11 Propagation velocity of peak pressure
Fig.12 Relationship between arrival time and propagation distance in normal gravity test GE-1 and GE-2
Fig.13 Relationship between arrival time and propagation distance in supergravity test CE-1 and CE-2
Fig.14 Relationship between blast wave velocity and peak pressure
试验
工况
Ns/(m·s?1)Np/(m·s?1)c/(m·s?1)dc/W1/3/(m·kg?1/3)σc/MPatrc/ms
GE-1188~259
GE-2102~350
CE-1185~329185~2072431.291.270.185
CE-2260~528260~2964861.510.430.242
Tab.2 Propagation velocity of explosion wave and attenuation critical characteristic value of blast wave
Fig.15 Stress time history curve below detonation
Fig.16 One-dimensional discrete wavelet transform
Fig.17 Blast induced initial stress dynamic unloading wave
工况(d/W1/3)/(m·kg?1/3)IΙ/(MPa·ms)PRΙ/%IΙΙ/(MPa·ms)PRΙΙ/%IΙΙΙ/(MPa·ms)PRΙΙΙ/%Is/(MPa·ms)
CE-10.860.48461.30.0010.10.30438.50.790
1.720.22834.00.0040.60.43965.40.672
2.360.06917.20.0061.50.32881.30.403
CE-21.080.16025.30.26541.90.20832.90.633
1.720.24729.10.0475.50.55565.40.848
2.360.05611.80.0265.50.39582.70.478
Tab.3 Magnitude and proportion of specific impulse under coupling effect of dynamic unloading of initial stress and blast stress
[1]   王涛, 余文力, 王少龙, 等 国外钻地武器的现状与发展趋势[J]. 导弹与航天运载技术, 2005, (5): 51- 56
WANG Tao, YU Wenli, WANG Shaolong, et al Present status and tendency of foreign earth-penetrating weapons[J]. Missiles and Space Vehicles, 2005, (5): 51- 56
[2]   HARDIN B, BLACK W L Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94 (2): 353- 369
doi: 10.1061/JSFEAQ.0001100
[3]   马冬冬, 汪鑫鹏, 马芹永, 等 考虑围压效应的冻结砂土动态本构模型研究[J]. 爆炸与冲击, 2023, 1 (1): 1- 10
MA Dongdong, WANG Xinpeng, MA Qinyong, et al Study on the dynamic constitutive model of frozen sandy soil considering confining pressure effect[J]. Explosion and Shock Waves, 2023, 1 (1): 1- 10
[4]   COOK N Seismicity associated with mining[J]. Engineering Geology, 1976, 10 (2): 99- 122
[5]   LU W, YANG J, YAN P, et al Dynamic response of rock mass induced by the transient release of in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129- 141
doi: 10.1016/j.ijrmms.2012.05.001
[6]   FAN Y, ZHENG J W, CUI X Z, et al Damage zones induced by in situ stress unloading during excavation of diversion tunnels for the Jinping II hydropower project[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 4689- 4715
doi: 10.1007/s10064-021-02172-y
[7]   US Army Engineers Waterways Experimental Station. Fundamentals of protective design for conventional weapons: TM5-855-1 [R]. Washington DC: Department of the Army, 1986: 54.
[8]   施鹏, 辛凯, 杨秀敏, 等 土中装药不同埋深爆炸试验研究[J]. 工程力学, 2006, (12): 171- 174
SHI peng, XIN kai, YANG Xiumin, et al Experimental study of explosion with different burial depths in soil[J]. Engineering Mechanics, 2006, (12): 171- 174
doi: 10.3969/j.issn.1000-4750.2006.12.030
[9]   ZULKIFLI A H, ANIZA I, NORAZMAN M N Feasibility of a small-scale test apparatus in measuring blast intensity of shallow buried charge detonation in in-situ soil[J]. Science and Technology of Energetic Materials, 2019, 80 (6): 229- 236
[10]   RIGBY S E, FAY S D, TYAS A, et al Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils[J]. Shock Waves, 2017, (2): 1- 14
[11]   VIVEK, PADMANABHA, SITHARAM, et al Laboratory scale investigation of stress wave propagation and vibrational characteristics in sand when subjected to air-blast loading[J]. International Journal of Impact Engineering, 2018, 114: 169- 181
doi: 10.1016/j.ijimpeng.2018.01.003
[12]   赵章泳, 王明洋, 邱艳宇, 等 爆炸波在非饱和钙质砂中的传播规律[J]. 爆炸与冲击, 2020, 40 (8): 76- 91
ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, et al The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion and Shock Waves, 2020, 40 (8): 76- 91
[13]   郭东, 侯晓峰, 于潇, 等 爆炸荷载在砂土中衰减规律的试验研究[J]. 防护工程, 2022, 44 (3): 8- 13
GUO dong, HOU Xiaofeng, YU Xiao, et al Experimental study on the attenuation of blast load in sands[J]. Protective Engineering, 2022, 44 (3): 8- 13
[14]   赵振宇, 周贻来, 任建伟, 等 浅埋炸药爆炸形貌及其冲击作用效应[J]. 爆炸与冲击, 2022, 42 (4): 52- 64
ZHAO Zhenyu, ZHOU Yilai, REN Jianwei, et al Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion and Shock Waves, 2022, 42 (4): 52- 64
[15]   潘亚豪, 宗周红, 钱海敏, 等 钙质砂介质中爆炸波传播规律的试验研究[J]. 爆炸与冲击, 2023, 1- 15
PAN Yahao, ZONG Zhouhong, QIAN Haimin, et al Experiment study on blast wave propagation in calcareous sand[J]. Explosion and Shock Waves, 2023, 1- 15
[16]   SCHMIDT R M, HOLAPPLE K A Theory and experiments on centrifuge cratering[J]. Journal of Geophysical Research, 1980, 85 (1): 235- 248
[17]   WALSH A J, CHARLIE W A. Stress wave propagation in unsaturated sands-volume 1: centrifuge modeling [R]. Fort Collins: Colorado State University, 1983.
[18]   HANSEN C Buried explosive-induced blast characterization by geotechnical centrifuge modeling[J]. Dynamic Behavior Mater, 2016, 2: 306- 325
doi: 10.1007/s40870-016-0067-1
[19]   范一锴, 陈祖煜, 梁向前, 等 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30 (Suppl. 2): 4123- 4128
FAN Yikai, CHEN Zuyu, LIANG Xiangqian, et al Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (Suppl. 2): 4123- 4128
[20]   马立秋, 张建民 黏性土爆炸成坑和地冲击传播的离心模型试验研究[J]. 岩石力学与工程学报, 2011, 30 (Suppl.1): 3172- 3178
MA Liqiu, ZHANG Jianmin Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (Suppl.1): 3172- 3178
[21]   中华人民共和国行业标准编写组. 小量火药、炸药及其制品危险性建筑设计安全规范: WJ 2470-1997 [S]. 北京: 兵器工业出版社, 1997.
[22]   汪斌, 张远平, 王彦平 一种水中爆炸气泡脉动实验研究方法[J]. 高压物理学报, 2009, 23 (5): 332- 337
WANG Bin, ZHANG Yuanping, WANG Yanping An experimental method of studying underwater explosion bubble oscillation[J]. Chinese Journal of High Pressure Physics, 2009, 23 (5): 332- 337
[23]   ZULKIFLI A H, ANIZA I, NORAZMAN M N, et al Detonation effects of shallow buried explosive in sandy soil on target plate acceleration in a small-scale blast test[J]. Matec Web of Conferences, 2018, 192 (4): 02028
[24]   亨利奇. 爆炸动力学及其应用 [M]. 熊建国,等,译. 北京: 科学出版社, 1987.
[25]   赵章泳, 邱艳宇, 王明洋, 等 非饱和钙质砂中平面爆炸波传播试验研究[J]. 防护工程, 2017, (3): 22- 28
ZHAO Zhangyong, QIU Yanyu, WANG Mingyang, et al Experimental study on plane explosive wave propagation in unsaturated calcareous sand[J]. Protective Engineering, 2017, (3): 22- 28
[26]   GEFKEN P R, FLORENCE A L, SANAI M. Spherical waves in saturated sand [R]. Menlo Park: SRI International, 1996.
[27]   严鹏, 卢文波, 周创兵 非均匀应力场中爆破开挖时地应力动态卸载所诱发的振动研究[J]. 岩石力学与工程学报, 2008, (4): 773- 781
YAN Peng, LU Wenbo, ZHOU Chuangbing Research on vibration induced by dynamic unloading of in-situ stress in asymmetrical geostress field[J]. Chinese Journal of High Pressure Physics, 2008, (4): 773- 781
[28]   杨润强, 严鹏, 王高辉, 等 地应力水平对深埋隧洞爆破振动频谱结构的影响[J]. 爆炸与冲击, 2019, 39 (5): 118- 129
YANG Runqiang, YAN Peng, WANG Gaohui, et al Effect of in-situ stress level on frequency spectrum of blasting vibration in a deep-buried tunnel[J]. Explosion and Shock Waves, 2019, 39 (5): 118- 129
[29]   杨建华, 卢文波, 陈明, 等 深部岩体应力瞬态释放激发微地震机制与识别[J]. 地震学报, 2012, 34 (5): 581- 592
YANG Jianhua, LU Wenbo, CHEN Ming, et al Mechanism and identification of triggered microseism by transient release of in-situ stress in deep rock mass[J]. ACTA Seismologica Sinica, 2012, 34 (5): 581- 592
doi: 10.3969/j.issn.0253-3782.2012.05.001
[1] Cong ZHANG,Zhong-ju FENG,Fu-chun WANG,Yun-hui GUAN,Fu-qiang ZHANG. Horizontal bearing characteristics of near-fault single pile based on centrifugal model test[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 542-551.
[2] XU Ri-Qiang, LI Cuan-Rui, SHU Jian-Feng. Calculation of inter-mediate passive earth pressure against rigid retaining wall with translation mode[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 2005-2009.