1. Highway School, Chang’an University, Xi’an 710064, China 2. SCEGC Mechanized Construction Group Limited Company, Xi’an 710064, China 3. Hainan Province Transportation Hall, Haikou 570204, China
In order to explore the horizontal bearing characteristics and stress mechanism of bridge pile foundations in fault development areas, through the geotechnical centrifugal model test, the selected variables were horizontal distance between the fault and the pile foundation, and the buried depth of the fault . The variation rules of horizontal ultimate bearing capacity, pile side soil resistance, pile bending moment, and pile shear force of a single pile near-fault bridge were studied. Test results show that the existence of faults inhibits the development of soil resistance on the side of the pile, and affects the horizontal bearing characteristics of a single pile. When the horizontal distance between the fault and the pile foundation increased from 1 to 5 times the pile diameter, the influence degree of the horizontal ultimate bearing capacity of the single pile on both sides of the fault was 1.38%-61.47%. The bending moment of the pile decreased gradually and attenuated rapidly, and the shearing force of the pile decreased gradually. When the buried depth of the fault was reduced from 0 cm to 28 cm, the influence degree of the horizontal ultimate bearing capacity of the single pile on both sides of the fault was 13.07%-51.60%. In the design of horizontal bearing capacity of the single pile near-fault, the critical value of the horizontal distance between fault and pile foundation and reasonable pile length can be determined according to the range of rock and soil affected by the fault.
Cong ZHANG,Zhong-ju FENG,Fu-chun WANG,Yun-hui GUAN,Fu-qiang ZHANG. Horizontal bearing characteristics of near-fault single pile based on centrifugal model test. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 542-551.
Fig.1Relative position relationship between pile foundation and fault
Fig.2Centrifugal testing machine and model box
物理量
量纲
数值
原型
离心模型
尺寸l
L
1
1/n
水的质量分数w
1
1
1
密度ρ
ML?3
1
1
应变ε
1
1
1
应力σ
ML?1T?2
1
1
质量m
M
1
1/n3
力F
MLT?2
1
1/n2
土抗力p
ML?1T?2
1
1/n
容重γ
ML?2T?2
1
n
加速度a
LT?2
1
n
时间t
T
1
1/n2
角度α
1
1
1
变形u
L
1
1/n
Tab.1Similarity of physical quantities in centrifugal model test of horizontal bearing characteristics of near-fault single pile
Fig.3Compressive strength testing of model pile
模型土
ρ/(kg·m?3)
E/MPa
φ/(°)
C/kPa
粉质黏土
18.00
28
20
26
持力层
25.00
56
—
—
Tab.2Soil parameters in centrifuge model test of horizontal bearing characteristics of near-fault single pile
Fig.4Schematic diagram of model and layout of test components
类型
S/cm
h/cm
对比桩
无断层
0
试验桩
1D、2D、3D、4D、5D
0
试验桩
3D
0、24、28、32
Tab.3Conditions in centrifugal model test of horizontal bearing characteristics of near-fault single pile
Fig.5Load-displacement curve of pile foundation with different horizontal distance between fault and pile foundation
Fig.6Variation of horizontal ultimate bearing capacity and influence degree of pile foundation at different horizontal distances between fault and pile foundation
Fig.7Variation of lateral soil resistance of piles at different horizontal distances between faults and pile foundations
Fig.8Variation of pile body bending moment at different horizontal distances between fault and pile foundation
Fig.9Variation of pile body shear force at different horizontal distances between fault and pile foundation
Fig.10Load-displacement curve of pile foundation at different fault burial depths
Fig.11Variation of horizontal ultimate bearing capacity and influence degree of pile foundation at different fault burial depths
Fig.12Variation of lateral soil resistance of piles at different fault burial depths
Fig.13Variation of pile body bending moment at different fault burial depths
Fig.14Variation of pile body shear force at different fault burial depths
[1]
冯忠居. 特殊地区基础工程[M]. 北京: 人民交通出版社, 2010 .
[2]
冯忠居. 基础工程[M]. 北京: 人民交通出版社, 2001.
[3]
FENG Z J, HUO J W, HU H B, et al Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 8884396
[4]
ZHANG C, FENG Z J, GUAN Y H, et al Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, 2022: 5074513
[5]
DONG Y X, FENG Z J, HU H B, et al The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020, 2020: 3241602
[6]
DONG Y X, FENG Z J, HE J B, et al Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, 2019: 9726013
[7]
FENG Z J, HU H B, DONG Y X, et al Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9 (14): 2874
doi: 10.3390/app9142874
[8]
冯忠居, 胡海波, 贾明晖, 等 钢管埋深对钢管混凝土复合桩竖向承载特性的影响[J]. 土木工程学报, 2019, 52 (Suppl.2): 110- 116 FENG Zhong-ju, HU Hai-bo, JIA Ming-hui, et al Influence of pipe bury depth on vertical bearing characteristics of concrete filled steel tubular composite pile[J]. China Civil Engineering Journal, 2019, 52 (Suppl.2): 110- 116
[9]
BRAY J D. Designing buildings to accommodate earthquake surface fault rupture [C]// ATC and SEI 2009 Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco: ASCE, 2009: 1269-1280.
[10]
PARK S W, GHASEMI H, SHEN J, et al Simulation of the seismic performance of the Bolu viaduct subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (13): 1249- 1270
doi: 10.1002/eqe.395
[11]
QU B, GOEL R K. Fault-rupture response spectrum analysis of a four-span curved bridge crossing earthquake fault rupture zones [C]// Structures Congress 2015. Portland: ASCE, 2015: 1810-1818.
[12]
惠迎新, 王克海 跨断层桥梁地震响应特性研究[J]. 桥梁建设, 2015, 45 (3): 70- 75 HUI Ying-xin, WANG Ke-hai Study of seismic response features of brides crossing faults[J]. Bridge Construction, 2015, 45 (3): 70- 75
[13]
冯忠居, 张聪, 何静斌, 等 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21 (4): 72- 83 FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al Shaking table test of liquefaction resistance of group piles under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (4): 72- 83
[14]
冯忠居, 张聪, 何静斌, 等 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42 (12): 3227- 3237 FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42 (12): 3227- 3237
[15]
冯忠居, 陈慧芸, 袁枫斌, 等 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19 (2): 36- 48 FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action [J]. Journal of Traffic and Transportation Engineering, 2019, 19 (2): 36- 48
doi: 10.3969/j.issn.1671-1637.2019.02.004
[16]
张聪, 冯忠居, 孟莹莹, 等 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43 (5): 1326- 1334 ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, et al Shaking table test on the difference of dynamic time-history response between the single pile and pile group foundation[J]. Rock and Soil Mechanics, 2022, 43 (5): 1326- 1334
[17]
冯忠居, 关云辉, 赖德金, 等 强震作用下桩-土-断层非线性动力相互作用特性[J]. 世界地震工程, 2021, 37 (4): 167- 176 FENG Zhong-ju, GUAN Yun-hui, LAI De-jin, et al Nonlinear dynamic interaction characteristics of pile-soil-fault under strong earthquake[J]. Word Earthquake Engineering, 2021, 37 (4): 167- 176
doi: 10.3969/j.issn.1007-6069.2021.04.018
[18]
冯忠居, 王富春, 张其浪, 等 钢管混凝土复合桩横轴向承载特性离心模型试验研究[J]. 土木工程学报, 2018, 51 (1): 114- 123+128 FENG Zhong-ju, WANG Fu-chun, ZHANG Qi-lang, et al Centrifuge model tests of horizontal bearing characteristics of steel pipe concrete composite pile[J]. China Civil Engineering Journal, 2018, 51 (1): 114- 123+128
[19]
何静斌, 冯忠居, 董芸秀, 等 强震区桩-土-断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41 (7): 2389- 2400 HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, et al Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area[J]. Rock and Soil Mechanics, 2020, 41 (7): 2389- 2400
[20]
BRANSBY M F, DAVIES M C, NAHAS A E Centrifuge modelling of normal fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, (6): 585- 605
[21]
YAO C F, TAKEMURA J, ZHANG J C Centrifuge modeling of single pile-shallow foundation interaction in reverse fault[J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106538
doi: 10.1016/j.soildyn.2020.106538
[22]
蔡奇鹏, 甘港璐, 吴宏伟, 等 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40 (3): 1067- 1075+1128 CAI Qi-peng, GAN Gang-lu, NG C W W, et al Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting[J]. Rock and Soil Mechanics, 2019, 40 (3): 1067- 1075+1128
[23]
蔡奇鹏, 吴宏伟, 陈星欣, 等 正断层错动诱发单桩破坏及避让距离研究[J]. 岩土工程学报, 2017, 39 (4): 720- 726 CAI Qi-peng, NG C W W, CHEN Xing-xin, et al Failure mechanism and setback distance of single pile subjected to normal faulting[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (4): 720- 726
[24]
AHMED W, BRANSBY M F Interaction of shallow foundations with reverse faults[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (7): 914- 924
doi: 10.1061/(ASCE)GT.1943-5606.0000072
[25]
SADR A, KONAGAI K, JOHANSSON J, et al. Nonlinear soil-pile group interaction in the vicinity of surface fault ruptures [C]// 13th World Conference on Earthquake Engineering. Vancouver: [s. n.], 2004: 554.
[26]
DAVOODI M, JAFARI M K, AHMADI F Comparing the performance of vertical and diagonal piles group at the normal fault rupture[J]. Journal of Seismology and Earthquake Engineering, 2014, 16 (2): 103- 110
[27]
符婉靖, 肖朝昀, 甘港璐, 等 正断层作用下高承台群桩基础的破坏机制数值模拟[J]. 华侨大学学报: 自然科学版, 2020, 41 (2): 156- 163 FU Wan-jing, XIAO Zhao-yun, GAN Gang-lu, et al Numerical simulation of failure mechanism of high-rise pile cap foundation subjected to normal fault[J]. Journal of Huaqiao University: Natural Science, 2020, 41 (2): 156- 163
[28]
GAZETAS G, PECKER A, FACCIOLI E, et al Preliminary design recommendations for dip-slip fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6: 677- 687
doi: 10.1007/s10518-008-9082-5
[29]
李瀚源, 李兴高, 马明哲, 等 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 631- 639 LI Han-yuan, LI Xing-gao, MA Ming-zhe, et al Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 631- 639
[30]
冯忠居, 陈锦华, 刘星越, 等 高速公路改扩建旧桥加宽桩基础差异沉降控制离心模型试验[J]. 长安大学学报: 自然科学版, 2022, 42 (2): 1- 9 FENG Zhong-ju, CHEN Jin-hua, LIU Xing-yue, et al Centrifugal model test on different settlement control of widened pile foundation of old bridge in reconstruction and extension of expressway[J]. Journal of Chang’an University: Natural Science Edition, 2022, 42 (2): 1- 9
[31]
向波, 马建林, 何云勇, 等 小直径钢管排桩加固边坡的离心模型试验[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 2644- 2652 XIANG Bo, MA Jian-lin, HE Yun-yong, et al Centrifugal model test of slope reinforced by small-diameter steel pipe row piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 2644- 2652
[32]
王子煜 库车坳陷断层控制下的盐岩塑性流动及对上覆地层构造影响的沙箱模拟[J]. 石油实验地质, 2002, 24 (5): 441- 445 WANG Zi-yu Sandbox simulation of saltrock plastic flow controlled by faults in the Kuche depression of the tarim basin and its influence on overlying stratigraphic structures[J]. Petroleum Geology and Experiment, 2002, 24 (5): 441- 445
doi: 10.3969/j.issn.1001-6112.2002.05.011
[33]
BRUNE J N, ANOOSHEHPOOR A 浅部软弱层对走滑破裂引起的强地面运动影响的物理模型[J]. 世界地震译丛, 1999, (4): 45- 53 BRUNE J N, ANOOSHEHPOOR A A physical model of the effect of a shallow weak layer on strong ground motion for strike-slip ruptures[J]. Translated World Seismology, 1999, (4): 45- 53
[34]
龚晓南. 桩基工程手册[M]. 第2版. 北京: 中国建筑工业出版社, 2016.
[35]
冯忠居, 孟莹莹, 张聪, 等 强震作用下液化场地群桩动力响应及p-y曲线 [J]. 岩土力学, 2022, 43 (5): 1289- 1298 FENG Zhong-ju, MENG Ying-ying, ZHANG Cong, et al Dynamic response and p-y curve of pile group in liquefaction site under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43 (5): 1289- 1298