Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1856-1866    DOI: 10.3785/j.issn.1008-973X.2021.10.007
    
On-line fault monitoring technology for industrial stationary/nonstationary complex system
Xiang-yu KONG(),Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO
Department of Missile Engineering, Rocket Force University of Engineering, Xi’an 710000, China
Download: HTML     PDF(1586KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A KPI related fault detection method based on double-layer improved projection to latent structures (DL-IPLS) was proposed in view of the low detection accuracy of key performance indicators (KPI) related fault detection methods in complex systems. The underlying model was established by using cointegration analysis and principal component analysis in order to extract the features of non-stationary and stationary variables. Then the extracted information was fused to establish the upper model of improved projection to latent structures. Statistics were designed in two orthogonal subspaces to realize on-line monitoring of KPI related faults. The simulation results of Tennessee-Eastman process and penicillin fermentation process show that the proposed method can effectively improve the detection rate of KPI related faults for industrial stationary and non-stationary complex industrial systems, and reduce the false alarm rate of KPI independent fault.



Key wordsdata driven      cointegration analysis      improved projection to latent structures      key performance indicator      process monitoring      fault detection     
Received: 23 January 2021      Published: 27 October 2021
CLC:  TP 277  
Fund:  国家自然科学基金资助项目(61673387,61833016);陕西省自然科学基金资助项目(2020JM-356)
Cite this article:

Xiang-yu KONG,Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO. On-line fault monitoring technology for industrial stationary/nonstationary complex system. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1856-1866.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1856


面向工业平稳/非平稳复杂系统的在线故障监测技术

针对复杂系统中关键性能指标(KPI)相关故障检测方法检测精度低的问题,提出基于双层改进潜结构投影(DL-IPLS)的KPI相关故障检测方法. 利用协整分析和主元分析建立底层模型,对非平稳和平稳变量进行特征提取. 将提取的信息进行融合,建立改进潜结构投影的上层模型,根据融合信息对KPI的贡献进行空间分解. 在2个正交子空间中设计统计量,实现KPI相关故障的在线监测. 田纳西-伊斯曼过程和青霉素发酵过程的仿真结果表明,在面向工业平稳和非平稳复杂工业系统检测时,所提方法有效提高了KPI相关故障的检测率,降低了KPI无关故障的误报率.


关键词: 数据驱动,  协整分析,  改进潜结构投影,  关键性能指标,  过程监控,  故障检测 
Fig.1 Fault monitoring flow chart based on DL-IPLS
监测算法 ${J_{{\rm{th,}}{T}_{\hat x}^2}}$ ${J_{{\rm{th,}}{T}_{\tilde x}^2}}$
MPLS 6.70 58.58
OSC-MPLS 7.10 52.75
IPLS 11.53 55.46
DL-IPLS 17.24 20.71
Tab.1 Control limits of four algorithms in TE process
故障编号 KPI相关故障描述 FDR /%
MPLS OSC-MPLS IPLS DL-IPLS
IDV(1) A/C进料流量比发生变化,成分B恒定 89.87 89.00 99.50 99.65
IDV(2) 组分B质量浓度发生变化,A/C供料比恒定 88.12 96.75 94.37 98.50
IDV(5) 冷凝器冷却水的入口温度 100 100 25.25 24.38
IDV(6) A供料损失(管道1) 99.12 98.75 99.12 99.13
IDV(7) C存在压力损失 41.12 49.37 73.00 99.63
IDV(8) 物料A,B,C供料质量浓度(管道4) 67.12 77.37 94.75 90.88
IDV(10) 物料C供料温度发生变化 46.00 54.37 46.12 77.87
IDV(12) 压缩机冷凝水入口温度变化 84.12 86.37 93.37 91.13
IDV(13) 反应器中的反应程度 90.37 89.87 90.12 92.38
IDV(17) 未知 54.87 65.37 56.50 69.25
IDV(18) 未知 90.00 89.75 88.50 89.13
IDV(20) 未知 49.25 68.25 39.25 75.88
IDV(21) 阀固定在稳态位置 70.25 75.87 56.62 34.50
Tab.2 FDR of KPI related faults in TE process
Fig.2 Detection results of KPI related fault IDV (5) by DL-IPLS
Fig.3 Detection results of KPI related fault IDV (7) by DL-IPLS
Fig.4 Detection results of KPI related fault IDV (10) by OSC-MPLS
Fig.5 Detection results of KPI related fault IDV (10) by IPLS
Fig.6 Detection results of KPI related fault IDV (10) by DL-IPLS
故障编号
KPI无关故障描述 FAR /%
MPLS OSC-MPLS IPLS DL-IPLS
IDV(3) 物料D供料温度发生变化 13.62 13.50 7.87 1.37
IDV(4) 反应器冷却水入口温度变化 11.00 9.37 22.00 1.37
IDV(9) D供料温度发生变化 7.50 5.00 9.12 1.12
IDV(11) 反应冷却水入口温度变化 9.62 8.50 21.37 3.37
IDV(15) 压缩机冷凝水阀门 10.51 10.75 13.25 0.62
IDV(16) 未知 45.86 35.00 28.38 66.00
IDV(19) 未知 7.00 10.88 3.38 1.25
Tab.3 FAR of KPI-unrelated faults in TE process
Fig.7 Detection results of KPI unrelated fault IDV (4) by OSC-MPLS
Fig.8 Detection results of KPI unrelated fault IDV (4) by IPLS
Fig.9 Detection results of KPI unrelated fault IDV (4) by DL-IPLS
标号 变量 标号 变量
1 采样时间 10 反应器体积
2 通风速率 11 排气二氧化碳浓度
3 搅拌速率 12 PH值
4 底物流加速率 13 温度
5 补料温度 14 产生热
6 底物物质的量 15 酸流加速率
7 溶解氧物质的量 16 碱流加速率
8 菌体物质的量 17 冷水流加速率
9 产物物质的量 18 热水流加速率
Tab.4 Pensim2.0 simulation data variable
Fig.10 Detection results of fault 1 in penicillin fermentation by DL-IPLS
Fig.11 Detection results of fault 2 in penicillin fermentation by DL-IPLS
[1]   LIU J, WANG D, CHEN J Monitoring framework based on generalized tensor PCA for three-dimensional batch process data[J]. Industrial and Engineering Chemistry Research, 2020, 59 (22): 10493- 10508
doi: 10.1021/acs.iecr.9b06244
[2]   罗林, 苏宏业, 班岚 Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2230- 2236
LUO Lin, SU Hong-ye, BAN Lan Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2230- 2236
[3]   LI Z, YAN X Performance-driven ensemble ICA chemical process monitoring based on fault-relevant models[J]. Soft Computing, 2020, 24 (16): 12289- 12302
doi: 10.1007/s00500-020-04673-6
[4]   LI Z, YAN X Fault-relevant optimal ensemble ICA model for non-gaussian process monitoring[J]. IEEE Transactions on Control Systems Technology, 2020, 28 (6): 2581- 2590
doi: 10.1109/TCST.2019.2936793
[5]   ZHONG B, WANG J, ZHOU J L, et al Quality rela-ted statistical process monitoring method based on gl-obal and local partial least squares projection[J]. In-dustrial and Engineering Chemistry Research, 2016, 55 (6): 1609- 1622
doi: 10.1021/acs.iecr.5b02559
[6]   WU O, BOUASWAIG A, IMSLAND L, et al Camp-aign-based modeling for degradation evolution in bat-ch processes using a multiway partial least squares a-pproach[J]. Computers and Chemical Engineering, 2019, 128 (2): 117- 127
[7]   LIU H, YANG J, ZHANG Y, et al Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares[J]. Process Safety and Environmental Protection, 2021, 147: 274- 282
doi: 10.1016/j.psep.2020.09.034
[8]   LI G, QIN S J, JI Y D Total PLS based contribution plots for fault diagnosis[J]. Acta Automatica Sinica, 2009, 35 (6): 759- 765
[9]   ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring[J]. AiChE Journal, 2010, 56 (1): 168- 178
[10]   QIN S J, ZHANG Y Y Quality-relevant and process relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59 (2): 496- 504
doi: 10.1002/aic.13959
[11]   YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring[J]. IFAC Proceedings Volumes, 2011, 44 (1): 12389- 12394
doi: 10.3182/20110828-6-IT-1002.02876
[12]   YIN S, ZHU X P, KAYNAK O Improved PLS focused on key performance indictor related fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2015, 62 (3): 1651- 1658
doi: 10.1109/TIE.2014.2345331
[13]   WANG G, YIN S Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11 (2): 398- 405
[14]   孙鹤. 数据驱动的复杂非平稳工业过程建模与监测[D]. 杭州: 浙江大学, 2018: 8-19.
SUN He. Complex nonstationary industrial process modeling and monitoring based on data driven methods[D]. Hangzhou: Zhejiang University, 2018: 8-19.
[15]   CHEN Q, KRUGER U, LEUNG A Y T Cointegration testing method for monitoring nonstationary processes[J]. Industrial and Engineering Chemistry Research, 2009, 48 (7): 3533- 3543
doi: 10.1021/ie801611s
[16]   SUN H, ZHANG S M, ZHAO C H, et al A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information[J]. Industrial and Engineering Chemistry Research, 2017, 56 (24): 6993- 7008
doi: 10.1021/acs.iecr.7b00156
[17]   ZHAO C H, HUANG B A full condition monitoring method for non-stationary dynamic chemical processes with cointegration and slow feature analysis[J]. ALCHE Journal, 2018, 64 (5): 1662- 1681
doi: 10.1002/aic.16048
[18]   LIN Y, KRUGER U, CHEN Q Monitoring nonstationary dynamic systems using cointegration and common trends analysis[J]. Industrial and Engineering Chemistry Research, 2017, 56 (31): 8895- 8905
doi: 10.1021/acs.iecr.7b00011
[19]   孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548
KONG Xiang-yu, CAO Ze-hao, AN Qiu-sheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
[20]   JOHANSEN S, JUSELIUS K Maximum likelihood estimation and inference on cointegration with applications to the demand for money[J]. Oxford Bulletin of Economics and Statistics, 1990, 52 (2): 169- 210
[21]   ZHAO C H, SUN H Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (6): 4749- 4758
doi: 10.1109/TIE.2018.2864703
[22]   TABRIZI A A, AL-BUGHARBEE H, TRENDAFILOVA I, et al A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions[J]. Meccanica, 2017, 52 (4-5): 1201- 1217
doi: 10.1007/s11012-016-0451-x
[23]   WILMS I, CROUX C Forecasting using sparse cointegration[J]. International Journal of Forecasting, 2016, 32 (4): 1256- 1267
doi: 10.1016/j.ijforecast.2016.04.005
[24]   LI G, QIN S J, TAO Y Non-stationarity and cointegration tests for fault detection of dynamic processes[J]. IFAC Proceedings Volumes, 2014, 47 (3): 10616- 10621
doi: 10.3182/20140824-6-ZA-1003.00754
[25]   BIROL G, ÜNDEY C, CINAR A A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering, 2002, 26 (11): 1553- 1565
doi: 10.1016/S0098-1354(02)00127-8
[26]   DOWNS J J, VOFEL E F A plant-wide industrial pr-ocess control problem[J]. Computers and Chemical Engineering, 1993, 17 (3): 245- 255
doi: 10.1016/0098-1354(93)80018-I
[27]   张成, 高宪文, 李元 基于k近邻主元得分差分的故障检测策略[J]. 自动化学报, 2020, 46 (10): 2229- 2238
ZHANG Cheng, GAO Xian-wen, LI Yuan Fault detection strategy based on principal component score difference of k nearest neighbors[J]. Acta Automatica Sinica, 2020, 46 (10): 2229- 2238
[1] Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.
[2] Xiao-wei LIU,Yun CHEN,Si ZHANG,Kang CHEN. Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 548-554.
[3] Ying-jie NIU,Yan-chen SU,Dun-cheng CHENG,Jia LIAO,Hai-bo ZHAO,Yong-qiang GAO. High-speed rail contact network U-holding nut fault detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1912-1921.
[4] Chang CAI,Yi-xiang HUANG,Hong-wen XING. State recognition for fuselage join based on gradient boosting tree[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1274-1281.
[5] HE Liu, YAO Zheng, CUI Xiao-wei, LU Ming-quan, GUO Jing. Signal structure based thermal noise model and its influence on RAIM[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 711-716.
[6] LUO Lin, SU Hong ye, BAN Lan. Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2230-2236.
[7] ZHANG Xin, CUI Xiao wei, FENG Zhen ming. Robust positioning technique based on sparse assumption[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1924-1928.
[8] HE Liu, YAO Zheng, CUI Xiao-wei, LU Ming-quan, GUO Jing. Signal structure based thermal noise model and its influence on RAIM[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 4-5.
[9] YANG Mao, LI Xiao-long. Rotor system fault diagnosis based on simulation data[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2188-2194.
[10] DENG Wu, CHEN Rong, SONG Yang-Jie. Fault detection method based on computational intelligence
technology fusion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1298-1302.
[11] CAO Yu-Peng, TIAN Hua-Min. Information divergence based process fault detection and diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1315-1320.
[12] CHU Zhi-Bo, WANG Pei-Liang, SONG Zhi-Huan. PCA-SVDD based fault detection and selflearning identification[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 652-658.