|
|
On-line fault monitoring technology for industrial stationary/nonstationary complex system |
Xiang-yu KONG(),Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO |
Department of Missile Engineering, Rocket Force University of Engineering, Xi’an 710000, China |
|
|
Abstract A KPI related fault detection method based on double-layer improved projection to latent structures (DL-IPLS) was proposed in view of the low detection accuracy of key performance indicators (KPI) related fault detection methods in complex systems. The underlying model was established by using cointegration analysis and principal component analysis in order to extract the features of non-stationary and stationary variables. Then the extracted information was fused to establish the upper model of improved projection to latent structures. Statistics were designed in two orthogonal subspaces to realize on-line monitoring of KPI related faults. The simulation results of Tennessee-Eastman process and penicillin fermentation process show that the proposed method can effectively improve the detection rate of KPI related faults for industrial stationary and non-stationary complex industrial systems, and reduce the false alarm rate of KPI independent fault.
|
Received: 23 January 2021
Published: 27 October 2021
|
|
Fund: 国家自然科学基金资助项目(61673387,61833016);陕西省自然科学基金资助项目(2020JM-356) |
面向工业平稳/非平稳复杂系统的在线故障监测技术
针对复杂系统中关键性能指标(KPI)相关故障检测方法检测精度低的问题,提出基于双层改进潜结构投影(DL-IPLS)的KPI相关故障检测方法. 利用协整分析和主元分析建立底层模型,对非平稳和平稳变量进行特征提取. 将提取的信息进行融合,建立改进潜结构投影的上层模型,根据融合信息对KPI的贡献进行空间分解. 在2个正交子空间中设计统计量,实现KPI相关故障的在线监测. 田纳西-伊斯曼过程和青霉素发酵过程的仿真结果表明,在面向工业平稳和非平稳复杂工业系统检测时,所提方法有效提高了KPI相关故障的检测率,降低了KPI无关故障的误报率.
关键词:
数据驱动,
协整分析,
改进潜结构投影,
关键性能指标,
过程监控,
故障检测
|
|
[1] |
LIU J, WANG D, CHEN J Monitoring framework based on generalized tensor PCA for three-dimensional batch process data[J]. Industrial and Engineering Chemistry Research, 2020, 59 (22): 10493- 10508
doi: 10.1021/acs.iecr.9b06244
|
|
|
[2] |
罗林, 苏宏业, 班岚 Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2230- 2236 LUO Lin, SU Hong-ye, BAN Lan Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2230- 2236
|
|
|
[3] |
LI Z, YAN X Performance-driven ensemble ICA chemical process monitoring based on fault-relevant models[J]. Soft Computing, 2020, 24 (16): 12289- 12302
doi: 10.1007/s00500-020-04673-6
|
|
|
[4] |
LI Z, YAN X Fault-relevant optimal ensemble ICA model for non-gaussian process monitoring[J]. IEEE Transactions on Control Systems Technology, 2020, 28 (6): 2581- 2590
doi: 10.1109/TCST.2019.2936793
|
|
|
[5] |
ZHONG B, WANG J, ZHOU J L, et al Quality rela-ted statistical process monitoring method based on gl-obal and local partial least squares projection[J]. In-dustrial and Engineering Chemistry Research, 2016, 55 (6): 1609- 1622
doi: 10.1021/acs.iecr.5b02559
|
|
|
[6] |
WU O, BOUASWAIG A, IMSLAND L, et al Camp-aign-based modeling for degradation evolution in bat-ch processes using a multiway partial least squares a-pproach[J]. Computers and Chemical Engineering, 2019, 128 (2): 117- 127
|
|
|
[7] |
LIU H, YANG J, ZHANG Y, et al Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares[J]. Process Safety and Environmental Protection, 2021, 147: 274- 282
doi: 10.1016/j.psep.2020.09.034
|
|
|
[8] |
LI G, QIN S J, JI Y D Total PLS based contribution plots for fault diagnosis[J]. Acta Automatica Sinica, 2009, 35 (6): 759- 765
|
|
|
[9] |
ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring[J]. AiChE Journal, 2010, 56 (1): 168- 178
|
|
|
[10] |
QIN S J, ZHANG Y Y Quality-relevant and process relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59 (2): 496- 504
doi: 10.1002/aic.13959
|
|
|
[11] |
YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring[J]. IFAC Proceedings Volumes, 2011, 44 (1): 12389- 12394
doi: 10.3182/20110828-6-IT-1002.02876
|
|
|
[12] |
YIN S, ZHU X P, KAYNAK O Improved PLS focused on key performance indictor related fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2015, 62 (3): 1651- 1658
doi: 10.1109/TIE.2014.2345331
|
|
|
[13] |
WANG G, YIN S Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11 (2): 398- 405
|
|
|
[14] |
孙鹤. 数据驱动的复杂非平稳工业过程建模与监测[D]. 杭州: 浙江大学, 2018: 8-19. SUN He. Complex nonstationary industrial process modeling and monitoring based on data driven methods[D]. Hangzhou: Zhejiang University, 2018: 8-19.
|
|
|
[15] |
CHEN Q, KRUGER U, LEUNG A Y T Cointegration testing method for monitoring nonstationary processes[J]. Industrial and Engineering Chemistry Research, 2009, 48 (7): 3533- 3543
doi: 10.1021/ie801611s
|
|
|
[16] |
SUN H, ZHANG S M, ZHAO C H, et al A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information[J]. Industrial and Engineering Chemistry Research, 2017, 56 (24): 6993- 7008
doi: 10.1021/acs.iecr.7b00156
|
|
|
[17] |
ZHAO C H, HUANG B A full condition monitoring method for non-stationary dynamic chemical processes with cointegration and slow feature analysis[J]. ALCHE Journal, 2018, 64 (5): 1662- 1681
doi: 10.1002/aic.16048
|
|
|
[18] |
LIN Y, KRUGER U, CHEN Q Monitoring nonstationary dynamic systems using cointegration and common trends analysis[J]. Industrial and Engineering Chemistry Research, 2017, 56 (31): 8895- 8905
doi: 10.1021/acs.iecr.7b00011
|
|
|
[19] |
孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548 KONG Xiang-yu, CAO Ze-hao, AN Qiu-sheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
|
|
|
[20] |
JOHANSEN S, JUSELIUS K Maximum likelihood estimation and inference on cointegration with applications to the demand for money[J]. Oxford Bulletin of Economics and Statistics, 1990, 52 (2): 169- 210
|
|
|
[21] |
ZHAO C H, SUN H Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (6): 4749- 4758
doi: 10.1109/TIE.2018.2864703
|
|
|
[22] |
TABRIZI A A, AL-BUGHARBEE H, TRENDAFILOVA I, et al A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions[J]. Meccanica, 2017, 52 (4-5): 1201- 1217
doi: 10.1007/s11012-016-0451-x
|
|
|
[23] |
WILMS I, CROUX C Forecasting using sparse cointegration[J]. International Journal of Forecasting, 2016, 32 (4): 1256- 1267
doi: 10.1016/j.ijforecast.2016.04.005
|
|
|
[24] |
LI G, QIN S J, TAO Y Non-stationarity and cointegration tests for fault detection of dynamic processes[J]. IFAC Proceedings Volumes, 2014, 47 (3): 10616- 10621
doi: 10.3182/20140824-6-ZA-1003.00754
|
|
|
[25] |
BIROL G, ÜNDEY C, CINAR A A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering, 2002, 26 (11): 1553- 1565
doi: 10.1016/S0098-1354(02)00127-8
|
|
|
[26] |
DOWNS J J, VOFEL E F A plant-wide industrial pr-ocess control problem[J]. Computers and Chemical Engineering, 1993, 17 (3): 245- 255
doi: 10.1016/0098-1354(93)80018-I
|
|
|
[27] |
张成, 高宪文, 李元 基于k近邻主元得分差分的故障检测策略[J]. 自动化学报, 2020, 46 (10): 2229- 2238 ZHANG Cheng, GAO Xian-wen, LI Yuan Fault detection strategy based on principal component score difference of k nearest neighbors[J]. Acta Automatica Sinica, 2020, 46 (10): 2229- 2238
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|