Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1912-1921    DOI: 10.3785/j.issn.1008-973X.2021.10.013
    
High-speed rail contact network U-holding nut fault detection algorithm
Ying-jie NIU1(),Yan-chen SU1,*(),Dun-cheng CHENG1,Jia LIAO1,Hai-bo ZHAO2,Yong-qiang GAO3
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. CRRC Changchun Rail Bus Limited Company, Changchun 130000, China
3. Shenshuo Railway Branch, China Shenhua Energy Limited Company, Yulin 719000, China
Download: HTML     PDF(1496KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The fault detection method combining the hoop nuts detector-net (HND-Net) and Mask_RCNN instance segmentation was proposed aiming at the problem of U-shaped hoop nut fault in the flat arm structure of high-speed railroad contact network. The proposed HND-Net target detection algorithm achieved the initial localization of the area where the U-shaped hoop of the flat wrist arm was located, and performed the pixel-level Mask_RCNN instance segmentation of the localized U-shaped hoop area in order to quickly obtain the precise localization and classification information of the four nuts of the U-shaped hoop of the flat wrist arm. The proposed segmentation algorithm achieved reliable fault diagnosis of U-shaped hoop nuts by using the obtained localization information. The experimental verification shows that the nut fault of U-type clamping hoop can be accurately located and detected in complex suspension images with good adaptability and high detection efficiency for shooting angle and shooting distance.



Key wordshigh-speed rail catenary      U-shaped hoop      HND-Net object detection      instance segmentation      fault detection     
Received: 27 October 2020      Published: 27 October 2021
CLC:  U 225  
Fund:  国家重点研发计划资助项目(2018YFB1201600);神华科技创新资助项目(SHGF-18-57)
Corresponding Authors: Yan-chen SU     E-mail: 445216101@qq.com;Su_yan_chen@126.com
Cite this article:

Ying-jie NIU,Yan-chen SU,Dun-cheng CHENG,Jia LIAO,Hai-bo ZHAO,Yong-qiang GAO. High-speed rail contact network U-holding nut fault detection algorithm. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1912-1921.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.013     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1912


高铁接触网U型抱箍螺母故障检测算法

针对高速铁路接触网平腕臂结构中U型抱箍螺母故障的问题,提出结合抱箍螺母检测算法(HND-Net)与Mask_RCNN实例分割的故障检测方法. 提出HND-Net目标检测算法,实现对平腕臂U型抱箍所在区域的初定位,对于定位得到的U型抱箍区域图像进行像素级别的Mask_RCNN实例分割,快速得到平腕臂U型抱箍4颗螺母的精确定位及分类信息. 利用得到的定位信息,提出分割算法实现对U型抱箍螺母的可靠故障诊断. 经实验验证可知,利用该方法能够在复杂的悬挂图像中准确地定位检测U型抱箍的螺母故障,对于拍摄角度、拍摄距离有良好的适应性和较高的检测效率.


关键词: 高铁接触网,  U型抱箍,  HND-Net目标检测,  实例分割,  故障诊断 
Fig.1 Structure of HND-Net model
Fig.2 Structure of residual module
Fig.3 Structure of residual feature augmentation module
融合规则 输出层 输出特征图尺寸
C7+C6 S1 16×16×512
C5+S1 S2 32×32×512
C4+S2 S3 64×64×512
C3+S3 S4 128×128×512
C2+S4 S5 256×256×512
Tab.1 Parameter table of enhanced feature
Fig.4 Structure of adaptive fusion module
Fig.5 Catenary suspension sample
Fig.6 Detection training loss curve
Fig.7 U-shaped hoop positioning image
Fig.8 U-shaped hoop capture image
Fig.9 Mask_RCNN network structure
Fig.10 Nut instance segmentation
Fig.11 Nut instance segmentation image
Fig.12 Nut1 missing
Fig.13 Nuts segmentation boxes image
Fig.14 Diagram of relationship between position of external rectangular frame of nut
模型 RFAM层数 mAP/%
HND-Net 0 97.21
HND-Net 1 97.82
HND-Net 2 98.89
HND-Net 3 99.22
HND-Net 4 99.51
HND-Net 5 99.84
Tab.2 Residual feature augmentation module ablation studies
模型 AFD层数 mAP/%
HND-Net 0 97.44
HND-Net 1 97.82
HND-Net 2 99.33
HND-Net 3 99.84
Tab.3 Adaptive fusion module ablation studies
模型 主干网络 mAP/% v /(帧·s?1 N /106
Faster_RCNN ResNeXt101 98.33 9.5 60
DETR ResNeXt101 98.61 15.0 61
M2Det ResNet101 98.75 2.4 98.9
EfficientDet D7 99.95 5.2 66
HND-Net HND-Net 99.84 17.1 52
Tab.4 Comparison of detection precision, detection velocity and parameter number under different models
Fig.15 Proposed algorithm for double bracket detection map
检测类别 总数 正确数 误检数 mAP/%
抱箍定位 800 797 3 99.6
松动检测 53 49 4 92.4
缺失检测 68 66 2 97.1
Tab.5 U-shaped hoop experiment test data
[1]   韩帅. 基于机器视觉的接触网管帽及U型抱箍故障检测算法研究[D]. 石家庄: 石家庄铁道大学, 2019.
HAN Shuai. Research on fault detection algorithm of catenary cap and U-shaped hoop based on machine vision [D]. Shijiazhuang: Shijiazhuang Railway University, 2019.
[2]   闵锋, 郎达, 吴涛 基于语义分割的接触网开口销状态检测[J]. 华中科技大学学报:自然科学版, 2020, 48 (1): 77- 81
MIN Feng, LANG Da, WU Tao Detection of cotter pin status based on semantic segmentation[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (1): 77- 81
[3]   狄亚柳. 基于深度学习的高铁接触网悬挂目标检测图像处理研究[D]. 成都: 西南交通大学, 2018.
DI Ya-liu. Research on image processing of high-speed rail catenary suspension target detection based on deep learning [D]. Chengdu: Southwest Jiaotong University, 2018.
[4]   徐钥斌. 图像处理在接触网吊弦缺陷检测中的应用[D]. 成都: 西南交通大学, 2018.
XU Yao-bin. The application of image processing in the detection of catenary hanging string defects [D]. Chengdu: Southwest Jiaotong University, 2018.
[5]   赵亚男, 吴黎明, 陈琦 基于多尺度融合SSD的小目标检测算法[J]. 计算机工程, 2020, 46 (1): 247- 254
ZHAO Ya-nan, WU Li-ming, CHEN Qi Small target detection algorithm based on multi-scale fusion SSD[J]. Computer Engineering, 2020, 46 (1): 247- 254
[6]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[7]   HU J, SHEN L, SUN G. Squeeze and excitation networks [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[8]   HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[9]   李长江, 韩志伟, 钟俊平, 等 基于级联Faster R-CNN的高铁接触网支撑装置等电位线故障检测[J]. 铁道学报, 2019, 41 (6): 68- 73
LI Chang-jiang, HAN Zhi-wei, ZHONG Jun-ping, et al High-speed rail catenary support device equipotential line fault detection based on cascaded Faster R-CNN[J]. Journal of the China Railway Society, 2019, 41 (6): 68- 73
doi: 10.3969/j.issn.1001-8360.2019.06.010
[10]   刘凯, 刘志刚, 陈隽文 基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究[J]. 铁道学报, 2019, 41 (7): 43- 49
LIU Kai, LIU Zhi-gang, CHEN Jun-wen Research on crack detection of high-speed railway catenary cable base based on accelerated regional convolutional neural network[J]. Journal of the China Railway Society, 2019, 41 (7): 43- 49
doi: 10.3969/j.issn.1001-8360.2019.07.006
[11]   赵文清, 周震东, 翟永杰 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15 (2): 310- 316
ZHAO Wen-qing, ZHOU Zhen-dong, ZHAI Yong-jie SSD small target detection algorithm based on deconvolution and feature fusion[J]. Journal of Intelligent Systems, 2020, 15 (2): 310- 316
[12]   章琳, 袁非牛, 张文睿, 等 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56 (1): 25- 37
ZHANG Lin, YUAN Fei-niu, ZHANG Wen-rui, et al A review of research on fully convolutional neural networks[J]. Computer Engineering and Applications, 2020, 56 (1): 25- 37
doi: 10.3778/j.issn.1002-8331.1910-0164
[13]   温尧乐, 李林燕, 尚欣茹, 等 一种改进的Mask RCNN特征融合实例分割方法[J]. 计算机应用与软件, 2019, 36 (10): 130- 133
WEN Yao-le, LI Lin-yan, SHANG Xin-ru, et al An improved Mask RCNN feature fusion instance segmentation method[J]. Computer Applications and Software, 2019, 36 (10): 130- 133
doi: 10.3969/j.issn.1000-386x.2019.10.023
[14]   李山坤, 陈立伟, 李爽 基于实例分割的双目特征点匹配目标识别和定位研究[J]. 无线电工程, 2020, 50 (2): 90- 96
LI Shan-kun, CHEN Li-wei, LI Shuang Research on target recognition and location based on instance segmentation with binocular feature point matching[J]. Radio Engineering, 2020, 50 (2): 90- 96
doi: 10.3969/j.issn.1003-3106.2020.02.002
[15]   王聪, 张珑 一种基于双分支车道线实例分割的检测算法[J]. 无线互联科技, 2020, 17 (3): 117- 118
WANG Cong, ZHANG Long A detection algorithm based on instance segmentation of dual-branch lane lines[J]. Wireless Internet Technology, 2020, 17 (3): 117- 118
doi: 10.3969/j.issn.1672-6944.2020.03.051
[16]   杨红梅, 刘志刚 基于SURF特征匹配的电气化铁路接触网支撑装置旋转双耳不良状态检测[J]. 铁道学报, 2016, 38 (8): 28- 34
YANG Hong-mei, LIU Zhi-gang Detection of the bad state of the rotating binaural of the catenary support device of the electrified railway based on SURF feature matching[J]. Journal of the Railway Society, 2016, 38 (8): 28- 34
doi: 10.3969/j.issn.1001-8360.2016.08.005
[17]   钟俊平, 刘志刚, 张桂南, 等 高铁接触网旋转双耳销钉状态检测方法研究[J]. 铁道学报, 2017, 39 (6): 65- 71
ZHONG Jun-ping, LIU Zhi-gang, ZHANG Gui-nan, et al Research on the detection method of rotating binaural pins for high-speed railway catenary[J]. Journal of the China Railway Society, 2017, 39 (6): 65- 71
doi: 10.3969/j.issn.1001-8360.2017.06.009
[18]   周俊, 陈剑云 基于DSSD的接触网鸟窝识别检测研究[J]. 华东交通大学学报, 2019, 36 (6): 70- 78
ZHOU Jun, CHEN Jian-yun Study on the identification and detection of catenary bird's nest based on DSSD[J]. Journal of East China Jiaotong University, 2019, 36 (6): 70- 78
[19]   TANG Z, YANG J l, LI Z, et al Grape disease image classification based on lightweight convolution neural networks and channelwise attention[J]. Computers and Electronics in Agriculture, 2020, 178 (2): 105735
[20]   ROY A G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks [J]// IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549.
[21]   SHUO Z, SERENA B, WILLIAM B Segmentation of X-ray microtomography data of porous scaffold[J]. Key Engineering Materials, 2007, 330-332 (Pt2): 911- 914
[22]   TAN M, PAN R, LEE Q V. EfficientDet: scalable and efficient object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
[23]   ZHANG T, LI L. An improved object detection algorithm based on M2Det [C]// 2020 IEEE International Conference on Artificial Intelligence and Computer Applications. Dalian: IEEE, 2020: 582-585.
[24]   SRINIVASAN A, SRIKANTH A, INDRAJIT H, et al. A novel approach for road accident detection using DETR algorithm [C]// 2020 International Conference on Intelligent Data Science Technologies and Applications. Valencia: [s. n. ], 2020: 75-80.
[1] Shu-qin YANG,Yu-hao MA,Ming-yu FANG,Wei-xing QIAN,Jie-xuan CAI,Tong LIU. Lane detection method in complex environments based on instance segmentation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 809-815, 832.
[2] Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.
[3] Xiang-yu KONG,Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO. On-line fault monitoring technology for industrial stationary/nonstationary complex system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1856-1866.
[4] HE Liu, YAO Zheng, CUI Xiao-wei, LU Ming-quan, GUO Jing. Signal structure based thermal noise model and its influence on RAIM[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 711-716.
[5] LUO Lin, SU Hong ye, BAN Lan. Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2230-2236.
[6] ZHANG Xin, CUI Xiao wei, FENG Zhen ming. Robust positioning technique based on sparse assumption[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1924-1928.
[7] HE Liu, YAO Zheng, CUI Xiao-wei, LU Ming-quan, GUO Jing. Signal structure based thermal noise model and its influence on RAIM[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 4-5.
[8] YANG Mao, LI Xiao-long. Rotor system fault diagnosis based on simulation data[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2188-2194.
[9] DENG Wu, CHEN Rong, SONG Yang-Jie. Fault detection method based on computational intelligence
technology fusion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1298-1302.
[10] CAO Yu-Peng, TIAN Hua-Min. Information divergence based process fault detection and diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1315-1320.
[11] CHU Zhi-Bo, WANG Pei-Liang, SONG Zhi-Huan. PCA-SVDD based fault detection and selflearning identification[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 652-658.