Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1815-1825    DOI: 10.3785/j.issn.1008-973X.2019.09.021
Communication Technology, Electrical Engineering     
Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system
Jing-jing LIN(),Yan-xia SHEN*()
Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi 214122, China
Download: HTML     PDF(3918KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel fault diagnosis and fault tolerant control method was introduced based on the concept of vector rotation to realize the current sensors' fault diagnosis and tolerant control in vector control system of permanent magnet synchronous motor (PMSM), to ensure system security. In order to get the fault information of three current sensors, three coordinate systems with different axes orientation was established, and the command value and the measured value of the α current components were compared. An adaptive backstepping observer was designed based on Lyapunov's stability theorem to estimate the current. Then, a logic-based detection mechanism was proposed based on the three coordinate systems; when fault occured, the measured current was replaced by the appropriate estimated current for feedback to reconstruct the system and ensure the stable operation of system. Simulations and experiments were carried out. Results show that this strategy can effectively realize the fault diagnosis of three current sensors in the PMSM drive system and accurately determine the fault phase. In the process of reconstructed current, the current component selection of αβ coordinate system was correct and stable, and the different combinations of measured current and estimated current can maintain high performance and system stability, which verifies the effectiveness and reliability of the proposed method.



Key wordspermanent magnet synchronous machine (PMSM)      fault diagnosis      fault tolerant control      vector rotation      adaptive backstepping observer     
Received: 28 July 2018      Published: 12 September 2019
CLC:  TM 341  
Corresponding Authors: Yan-xia SHEN     E-mail: linjingjing112@163.com;shenyx@jiangnan.edu.cn
Cite this article:

Jing-jing LIN,Yan-xia SHEN. Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1815-1825.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.021     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1815


永磁同步电机驱动系统电流传感器容错控制

为实现永磁同步电机矢量控制系统中电流传感器的故障诊断及其容错控制,确保系统的安全性,基于矢量旋转的概念提出一种新颖的故障诊断及容错控制方法. 建立3个不同轴定向的坐标系,将坐标系下α轴定子电流分量的指令值和测量值比较,判断3个电流传感器的故障信息;基于Lyapunov稳定性定理设计自适应反推观测器进行电流估计;根据3个坐标系设计逻辑判断机制,故障发生时以恰当的估计电流取代测量电流进行反馈以重构系统,保证电机在故障发生时稳定运行. 仿真和实验结果证明:该策略能够有效实现永磁同步电机驱动系统中三相电流传感器的故障诊断、准确判断故障相,在重构电流过程中,αβ坐标系电流分量的选取正确而稳定,测量电流与估计电流的不同组合能够保持较高性能,维持系统的稳定性,具有较高的可行性和可靠性.


关键词: 永磁同步电机(PMSM),  故障诊断,  容错控制,  矢量旋转,  自适应反推观测器 
Fig.1 Frame Ⅰ oriented by $a$ phase
Fig.2 Frame Ⅱ oriented by $b$ phase
Fig.3 Frame Ⅲ oriented by $c$ phase
Fig.4 Block diagram of adaptive backstepping observer
Fig.5 Fault diagnosis diagram of stator current sensors
Fig.6 Diagram of $\alpha $-axis current logic judgment
Fig.7 Diagram of $\beta $-axis current logic judgment
Fig.8 Electrical angle logic judgment diagram
Fig.9 Diagram of $d\; {\rm{and}} \;q$-axis currents logic judgment
x y z a b c α β 电角度
0 0 0 正常 正常 正常 $i_\alpha ^{\rm I}$ $i_\beta ^{\rm I}$ $\theta $
1 0 0 故障 正常 正常 $i_\alpha ^{{\rm I}{\rm I}}$ $i_\beta ^{{\rm I}{\rm I}}$ $ \theta - {120^\circ } $
0 1 0 正常 故障 正常 $i_\alpha ^{{\rm I}{\rm I}{\rm I}}$ $i_\beta ^{{\rm I}{\rm I}{\rm I}}$ $\theta + {120^\circ } $
0 0 1 正常 正常 故障 $i_\alpha ^{\rm I}$ $i_\beta ^{\rm I}$ $\theta $
1 1 0 故障 故障 正常 $i_\alpha ^{{\rm I}{\rm I}{\rm I}}$ $\mathop {i_\beta ^{{\rm I}{\rm I}{\rm I}}}\limits^ \wedge $ $ \theta + {120^\circ }$
1 0 1 故障 正常 故障 $i_\alpha ^{{\rm I}{\rm I}}$ $\mathop {i_\beta ^{{\rm I}{\rm I}}}\limits^ \wedge $ $ \theta -{120^\circ } $
0 1 1 正常 故障 故障 $i_\alpha ^{\rm I}$ $\mathop {i_\beta ^{\rm I}}\limits^ \wedge $ $\theta $
1 1 1 故障 故障 故障 $\mathop {i_\alpha ^{\rm I}}\limits^ \wedge $ $\mathop {i_\beta ^{\rm I}}\limits^ \wedge $ $\theta $
Tab.1 Table of fault tolerant strategy logic judgment
Fig.10 Structure of fault tolerant control system
参数 含义 数值 单位
${P_{\rm{N}}}$ 额定功率 1.5 ${\rm{kW}}$
${\omega _{\rm{N}}}$ 额定转速 1 000 ${\rm{r}}/{\rm{min}}$
${i_{\rm{N}}}$ 额定相电流 6.76 ${\rm{A}}$
${T_{\rm{N}}}$ 额定转矩 14.32 ${\rm{N}} \cdot {\rm{m}}$
${R_{\rm{s}}}$ 定子电阻 1.79 $\Omega $
${L_q}$ 交轴电感 6.68 ${\rm{mH}}$
${L_d}$ 直轴电感 6.68 ${\rm{mH}}$
$J$ 转动惯量 17.92 ${\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}$
$p$ 极对数 4 ?
Tab.2 Parameters of surface mounted permanent magnet synchronous machine (PMSM)
Fig.11 Simulation results under fault in three-phase current sensors
Fig.12 Experimental platform of permanent magnet synchronous motor experimental based on dSPACE1007
Fig.13 Experimental results under fault in three-phase current sensors
[1]   CONSOLI A, SCARCELLA G, SCELBA G, et al Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control[J]. IEEE Transactions on Industry Applications, 2010, 46 (1): 121- 129
doi: 10.1109/TIA.2009.2036665
[2]   DE ALMEIDA A T, FERREIRA F J T E, FONG J A C Standards for efficiency of electric motors[J]. IEEE Industry Applications Magazine, 2011, 17 (1): 12- 19
doi: 10.1109/MIAS.2010.939427
[3]   李国飞, 滕青芳, 王传鲁, 等 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报: 工学版, 2017, 51 (3): 620- 627
LI Guo-fei, TENG Xing-fang, WANG Chuan-lu FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 620- 627
[4]   WANG W, CHENG M, ZHANG B F, et al A fault tolerant permanent-magnet traction module for subway applications[J]. IEEE Transactions on Power Electronics, 2013, 29 (4): 1646- 1658
[5]   AKRAD A, HILAIRET M, DIALLO D Design of a fault tolerant controller based on observers for a PMSM drive[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (4): 1416- 1427
doi: 10.1109/TIE.2010.2050756
[6]   BELLINI A, FILIPPETTI F, TASSONI C, et al Advances in diagnostic techniques for induction machines[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (12): 4109- 4126
doi: 10.1109/TIE.2008.2007527
[7]   GAO Z W, CECATI C, DINGS X A survey of fault diagnosis and fault tolerant techniques. Part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 6 (62): 3757- 3767
[8]   LEE K S, RYU J S Instrument fault detection and compensation scheme for direct torque controlled induction motor drives[J]. IEE Proceedings-Control Theory and Applications, 2003, 4 (150): 376- 382
[9]   YU Y, WANG Z Y, XU D N Speed and current sensors fault detection and isolation based on adaptive observers for induction motor drivers[J]. Journal of Power Electronics, 2014, 5 (14): 967- 979
[10]   HUANG G, LUO Y P, ZHANG C F, et al Current sensor fault diagnosis based on a sliding mode observer for PMSM driven systems[J]. Sensors, 2015, 15 (5): 11027- 11049
doi: 10.3390/s150511027
[11]   BERRIRI H, NAOUAR W, BAHRI I, et al Field programmable gate array-based fault tolerant hysteresis current control for AC machine drives[J]. IET Electric Power Applications, 2012, 6 (3): 181- 189
doi: 10.1049/iet-epa.2011.0053
[12]   WU C Y, GUO C Q, XIE Z W, et al A signal-based fault detection and tolerance control method of current sensor for PMSM drive[J]. IEEE Transactions on Industrial Electronics, 2018, PP (99): 1
[13]   KHIL S K E, JLASSI I, ESTIMA J O, et al Current sensor fault detection and isolation method for PMSM drives, using average normalised currents[J]. Electronics Letters, 2016, 52 (17): 1434- 1436
doi: 10.1049/el.2016.2198
[14]   FREIRE N M A, ESTIMA J O, CARDOSO A J M A new approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems[J]. IEEE Transactions on Industry Applications, 2014, 50 (2): 1206- 1214
doi: 10.1109/TIA.2013.2271992
[15]   MEINGUET F, GYSELINCK J. Fault detection, isolation and reconfiguration of three-phase AC drive with current sensor fault [C] // IEEE International Electric Machines and Drives Conference. Niagara Falls: IEEE, 2011: 200-205.
[16]   NAJAFABADI T A, SALMASI F R, MARALANI P J Detection and isolation of speed-, dc-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (5): 1662- 1672
doi: 10.1109/TIE.2010.2055775
[17]   BENG G F H, ZHANG X N, VILATHGAMUWA D M A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2013, 61 (8): 3485- 3495
[18]   CHAKRABORTY C, VERMA V Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (3): 1943- 1954
doi: 10.1109/TIE.2014.2345337
[19]   张信, 杨振强, 吴梦杰 基于电流估计的永磁同步电机矢量控制[J]. 微特电机, 2016, 44 (5): 52- 59
ZHANG Xin, YANG Zhen-qiang, WU Meng-jie Vector control of PMSM based on the current estimate[J]. Small and Special Electrical Machines, 2016, 44 (5): 52- 59
[1] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[2] Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.
[3] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[4] GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1223-1230.
[5] YU Jian-bo, LI Chuan-feng, LV Jing-xiang. Average combination difference morphological filter analysis on fault signals of rolling bearing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1845-1853.
[6] ZHU Wen-ying, FENG Zhi-peng. Analysis of planetary gear vibration signal based on iterated Hilbert transform[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1587-1595.
[7] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1499-1506.
[8] CHEN Chen,LI Xiao run. Fault diagnosis method of circuit breaker operating mechanism based on coil current analysis[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 527-535.
[9] HAN Ling, LU Yan hui, AN Ying, TIAN Li yuan. Faults diagnosis and classification based on fault-tolerant  theory for continuously variable transmission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1927-1936.
[10] MI Gang-gang, ZHOU Wen-hua, SHEN Cheng-yu, GUO Xiu-qi. Design of driving module and fault diagnosis for
high-speed solenoid valve of diesel
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1654-1659.
[11] YANG Xian-Yong, ZHOU Xiao-Jun, LIN Yong, ZHANG Wen-Bin, CHEN Lu. Fault diagnosis approach for rolling bearing based on V-detector algorithm[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1805-1810.
[12] YANG Xian-Yong, ZHOU Xiao-Jun, ZHANG Wen-Bin, YANG Fu-Chun. Rolling bearing fault diagnosis based on local wave method
and KPCA-LSSVM
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1519-1524.
[13] DU Wen-Chi, WANG Kun, JIAN Feng. Feature space dimensionreduction based process monitoring of solvent dehydration separation process[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1255-1259.
[14] LIU Zi-Jian, TUN Min, CHEN Xin, WANG Chun-Sheng. Hybrid nonlinear control strategy of permanent magnet
synchronous machine
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1303-1307.
[15] HU Zhi-Kun, WANG Mei-Ling, GUI Wei-Hua, YANG Chun-Hua, DING Jia-Feng. Support vector machine based classification method for
timeseries periodic waveform
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1327-1332.