Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (6): 1223-1230    DOI: 10.3785/j.issn.1008-973X.2018.06.023
Mechanical and Energy Engineering     
Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF
GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen
State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration, Shanghai Jiaotong University, Shanghai 200240, China
Download:   PDF(1920KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method of estimation of time-varying parameters and fault diagnosis was proposed based on unscented transformation of strong tracking filter (UTSTF) according to parameter-biased fault of li-ion batteries. The open circuit voltage (OCV)-state of charge (SOC) characteristic mapping curve and One order equivalent circuit model were established. Then the joint state-space equation of battery was founded by introducing parameters into state variable. UTSTF was applied to battery parameters estimation in real-time. The fault diagnosis process was proposed according to parameters estimation results. Taking battery's internal contact-fault and diffusion-fault as a case, battery charging and discharging tests were conducted under the temperature-varying conditions for simulating fault occurrence. The estimation results of UTSTF and unscented Kalman filter (UKF) were compared with true value. The experimental results show that the proposed method can achieve better tracking performance, estimated accuracy and diagnosis reliability for battery fault parameters.



Received: 17 March 2017      Published: 20 June 2018
CLC:  U463  
Cite this article:

GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1223-1230.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.06.023     OR     http://www.zjujournals.com/eng/Y2018/V52/I6/1223


UTSTF锂离子电池时变参数估计与故障诊断

针对锂离子电池的参数偏差型故障诊断问题,提出基于无迹变换强跟踪滤波器(UTSTF)的电池时变参数估计与故障诊断方法.建立电池的开路电压(OCV)-荷电状态(SOC)特性曲线与一阶等效电路模型;将电池参数加入状态变量,建立状态与参数的联合状态空间方程,通过UTSTF算法得到电池参数的实时估计结果,并根据估计值设计故障诊断算法流程;以电池内部的接触型故障与扩散型故障为例,在变温环境下模拟故障发生并进行电池充放测试,得到电池参数在UTSTF与无迹卡尔曼滤波(UKF)下估计值与真实值的对比.实验结果表明,所提方法对于电池故障参数具有良好的跟踪效果、较高的估计精度与诊断可靠性.

[1] ANDREA D. Battery management systems for large lithium-ion battery packs[M]. Norwood:Artech House, 2010:4-6.
[2] SIDHU A, IZADIAN A, ANWAR S. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015,62(2):1002-1011.
[3] XIA B, SHANG Y, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337(1):1-10.
[4] CHEN W, CHEN W T, SAIF M, et al. Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of Luenberger and learning observers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):290-298.
[5] CHEN Z, LIN F, WANG C, et al. Active diagnosability of discrete event systems and its application to battery fault diagnosis[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1892-1898.
[6] ZHANG X, WANG Y, YANG D, et al. An on-lineestimation of battery pack parameters and state-of-charge using dual filters based on pack model[J]. Energy, 2016, 115(11):219-229.
[7] HE H, XIONG R, ZHANG X, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4):1461-1469.
[8] LIU L, WANG L Y, CHEN Z, et al. Integrated system identification and state-of-charge estimation of battery systems[J]. IEEE Transactions on Energy conversion, 2013, 28(1):12-23.
[9] LIU X, CHEN Z, ZHANG C, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation[J]. Applied Energy, 2014, 123(6):263-272.
[10] SUN F, XIONG R. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles[J]. Journal of Power Sources, 2015, 274(1):582-594.
[11] SUN F, XIONG R, HE H. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[J]. Applied Energy, 2016, 162(1):1399-1409.
[12] CHEN Z, WANG L Y, YIN G, et al. Accurate probabilistic characterization of battery estimates by using large deviation principles for real-time battery diagnosis[J]. IEEE Transactions on Energy Conversion, 2013, 28(4):860-870.
[13] ZHANG H, PEI L, SUN J, et al. Online diagnosis for the capacity fade fault of a parallel-connected lithium ion battery group[J]. Energies, 2016, 9(5):387.
[14] ZHENG Y, HAN X, LU L, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223(2):136-146.
[15] 周东华.一类非线性系统故障检测与诊断的滤波器方法[D].上海:上海交通大学, 1990. ZHOU Dong-hua. A class of nonlinear system fault detection and diagnostic filters[D]. Shanghai:Shanghai Jiao Tong University, 1990.
[16] ZHOU D H, SU Y X, XI Y G, et al. Extension of Friedland's separate-bias estimation to randomly time-varying bias of nonlinear systems[J]. IEEE Transactions on Automatic Control, 1993, 38(8):1270-1273.
[17] 王小旭,赵琳,夏全喜,等.基于Unscented变换的强跟踪滤波器[J].控制与决策,2010,25(7):1063-1068. WANG Xiao-xu, ZHAO Lin, XIA Quan-xi, et al. Strong tracking filter based on unscented transformation[J]. Control and Decision, 2010, 25(7):1063-1068.
[18] 孙国强,黄蔓云,卫志农,等.基于无迹变换强跟踪滤波的发电机动态状态估计[J].中国电机工程学报,2016,36(3):615-623. SUN Guo-qiang, HUANG Man-yun, WEI Zhi-nong, et al. Dynamic stateestimation for synchronous machines based on unscented transformation of strong tracking filter[J]. Proceedings of the CSEE, 2016,36(3):615-623.
[19] 胡高歌,刘逸涵,高社生,等.改进的强跟踪UKF算法及其在INS/GPS组合导航中的应用[J].中国惯性技术学报,2014(5):634-639. HU Gao-ge, LIU Yi-han, GAO She-sheng, et al. Improved strong tracking UKF and its application in INS/GPS integrated navigation[J]. Journal of Chinese Inertial Technology, 2014(5):634-639.
[20] CHIANG C J, YANG J L, CHENG W C. Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter[J]. Journal of Power Sources, 2013, 234(6):234-243.
[21] DONG G, WEI J, ZHANG C, et al. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method[J]. Applied Energy, 2016, 162(1):163-171.
[22] WANG Y, ZHANG C, CHEN Z. On-line battery state-of-charge estimation based on an integrated estimator[J]. Applied Energy, 2017, 185(1):2026-2032.
[23] ZHANG C, WANG L Y, LI X. Robust and adaptive estimation of state of charge for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8):4948-4957.
[24] RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4):2053-2061.
[25] DEY S, AYALEW B. A diagnostic scheme for detection, isolation and estimation of electrochemical faults in lithium-ion cells[C]//ASME Dynamic Systems and Control Conference. Columbus:ASME, 2015:V001T13A001-V001T13A001.
[26] MARCICKI J, ONORI S, RIZZONI G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]//ASME Dynamic Systems and Control Conference. Cambridge:ASME, 2010:607-614.

[1] LIU Hong-wei, LIU Wei, LIN Guang-zhong, ZHANG Jie, LI Dao-fei. Design and improvement of brake pedal feel emulator in electro-hydraulic brake system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2271-2278.
[2] HAN Lian-jin, WU Jiang-hong, XUE Zhi-qiang. Simulation and improvement of heat pump air conditioning system for electric bus[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 641-648.
[3] WANG Wei-Dui, TUN Can, BO Shuang-Jia, et al. Negative stiffness based control strategy of vehicle semi-active suspension[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1129-1133.