Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1805-1814    DOI: 10.3785/j.issn.1008-973X.2019.09.020
Communication Technology, Electrical Engineering     
Novel access point deployment method in WIFI convergence network
Duan-po WU1(),Zheng-yu KONG1,Shu-wei CEN2,Xin-yu JIN3,*()
1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. China Mobile Communications Group Zhejiang Co., Ltd. Hangzhou Branch, Hangzhou 310006, China
3. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(862KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A priority-based access point (AP) deployment scheme was proposed in the WIFI convergence network, in order to make full use of the unlicensed frequency band, reducing the pressure of the cellular network, and improve the user throughput. By analyzing the characteristics of AP and small base station (SBS) coverage, the APs were divided into high-priority dedicated APs and lower-priority shared APs. Meanwhile, for the proposed AP deployment schemes, three APs resource scheduling modes were proposed, including traffic offloading, resource sharing and hybrid mode. The performance of WIFI convergence network in the unsaturated, semi-saturated, and saturated state was dynamically analyzed. Results show that, compared with the traditional AP deployment scheme, the proposed scheme improved the average throughput of the user by 3%~10% in the unsaturated state, and by 5%~20% in the semi-saturated state, and provides the same performance as traditional AP deployment scheme in the saturated state.



Key wordsunlicensed band      LTE and WIFI coexistence      access point (AP) deployment      priority      traffic offloading      resource sharing      cellular network     
Received: 20 January 2019      Published: 12 September 2019
CLC:  TN 9  
Corresponding Authors: Xin-yu JIN     E-mail: wuduanpo@hdu.edu.cn;jinxy@zju.edu.cn
Cite this article:

Duan-po WU,Zheng-yu KONG,Shu-wei CEN,Xin-yu JIN. Novel access point deployment method in WIFI convergence network. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1805-1814.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.020     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1805


WIFI融合网络新型接入点部署方案

为了充分利用免许可频段,减轻蜂窝网络压力,提高用户吞吐量,针对WIFI融合网络中无线接入点(AP)部署方式,提出基于优先级划分的AP部署方案. 通过分析AP与小基站(SBS)覆盖范围特点,将AP划分为高优先级的专属AP与低优先级的共享AP. 针对提出的部署方案,设计业务卸载、资源共享、混合模式3种AP资源调度方式. 动态分析WIFI融合网络在未饱和、半饱和、饱和3种工作状态下的整体性能. 结果表明: 与传统的AP部署方案相比,提出的方案在未饱和状态下用户平均吞吐量的性能提升了3% ~10%,在半饱和状态下平均吞吐量性能提升了5%~20%,在饱和状态下可提供与传统AP部署方案相同的性能.


关键词: 免许可频段,  LTE与WIFI共存,  接入点 (AP) 部署,  优先级,  业务卸载,  资源共享,  蜂窝网络 
Fig.1 Coexistence system model for long term evolution (LTE) and WIFI
Fig.2 Traffic offloading,resource sharing,and hybrid mode under traditional AP deployment scheme
参数 符号 数值 单位
噪声功率 P ?95 dBm
路损模型参数 α 3.75,5.00 ?
传输功率 P 20 dBm
传输包大小 E[P] 1 500 byte
许可、免许可频段带宽 BsB 20,20 MHz
最小竞争窗口 Wmin 16 μs
最大竞争窗口 Wmax 1 024 μs
重传次数 Rlimit 6
WIFI信道比特率 C 130 Mbps
PHY数据头 PHY 192 bit
MAC数据头 MAC 224 bit
空时隙的间隔时间 Tδ 20 μs
时隙时间 δ 9 μs
确认帧 ACK 112+PHY数据头 bit
请求发送帧 RTS 160+PHY数据头 bit
清除发送帧 CTS 112+PHY数据头 bit
短帧间间隔 SIFS 16 μs
分布式帧间间隔 DIFS 50 μs
时隙个数 LA 100
Tab.1 Parameter table of WIFI throughput simulation
Fig.3 SBS average user throughput of traffic offloading, resource sharing,and hybrid mode under two AP deployment scheme in unsaturated state
Fig.4 SBS average user throughput of traffic offloading, resource sharing,and hybrid mode under two AP deployment scheme in semi-saturated state
Fig.5 SBS average user throughput of Traffic offloading,resource sharing,and hybrid mode under two AP deployment scheme in saturated state
[1]   LI Z, DONG C, LI A, et al. Performance analysis for traffic offloading with MU-MIMO enabled AP in LTE-U networks [C] // GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore: IEEE, 2017: 1-6.
[2]   LEE J, YI Y, CHONG S, et al Economics of WiFi offloading: Trading delay for cellular capacity[J]. IEEE Transactions on Wireless Communications, 2014, 13 (3): 1540- 1554
doi: 10.1109/TWC.2014.010214.130949
[3]   BENNIS M, SIMSEK M, CZYLWIK A, et al When cellular meets WiFi in wireless small cell networks[J]. IEEE Communications Magazine, 2013, 51 (6): 44- 50
doi: 10.1109/MCOM.2013.6525594
[4]   KIM S, CHON Y, LEE S, et al. Prediction-based personalized offloading of cellular traffic through WiFi networks [C] // 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). Sydney: IEEE, 2016: 1-9.
[5]   BULUT E, SZYMANSKI B K. Rethinking offloading wifi access point deployment from user perspective [C] // 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). New York: IEEE, 2016: 1-6.
[6]   FAKHFAKH E, HAMOUDA S. Incentive reward for efficient WiFi offloading using Q-learning approach [C] // 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). Valencia: IEEE, 2017: 1114-1119.
[7]   CHEN Q, YU G, SHAN H, et al Cellular meets WiFi: Traffic offloading or resource sharing?[J]. IEEE Transactions on Wireless Communications, 2016, 15 (5): 3354- 3367
doi: 10.1109/TWC.2016.2520478
[8]   KANG X, CHIA Y K, SUN S, et al Mobile data offloading through a third-party WiFi access point: an operator's perspective[J]. IEEE Transactions on Wireless Communications, 2014, 13 (10): 5340- 5351
doi: 10.1109/TWC.2014.2353057
[9]   SUI K, SUN S, AZZABI Y, et al. Understanding the impact of ap density on wifi performance through real-world deployment [C] // 2016 IEEE International Symposium on Local and Metropolitan area networks. Rome: IEEE, 2016: 1-6.
[10]   TANG S, MA L, XU Y A novel AP placement algorithm based on user distribution for indoor WLAN system[J]. China Communications, 2016, 13 (10): 108- 118
doi: 10.1109/CC.2016.7733036
[11]   HSU F T, SU H J. When does the AP deployment incentivize a user to offload cellular data: An energy efficiency viewpoint [C] // 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). Athens: IEEE, 2014: 210-213.
[12]   ZHANG X, ZHENG Z, LIU J, et al. Optimal power allocation and AP deployment in green wireless cooperative communications [C] // 2012 IEEE Global Communications Conference (GLOBECOM). Anaheim: IEEE, 2012: 4000-4005.
[13]   BULUT E, SZYMANSKI B K WiFi access point deployment for efficient mobile data offloading[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2013, 17 (1): 71- 78
doi: 10.1145/2502935
[14]   WANG T, XING G, LI M, et al. Efficient wifi deployment algorithms based on realistic mobility characteristics [C] // The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010). San Francisco: IEEE, 2010: 422-431.
[15]   MA L, ZHENG X, LU Y, et al. Optimization for the deployment and transmitting power of AP based on green WLAN [C] // 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control. Shenyang: IEEE, 2013: 129-134.
[16]   KIM T, TAK S Modeling and performance evaluation of AP deployment schemes for indoor location-awareness[J]. Journal of the Korea Institute of Information and Communication Engineering, 2013, 17 (4): 847- 856
doi: 10.6109/jkiice.2013.17.4.847
[17]   NIHTIL? T, TYKHOMYROV V, ALANEN O, et al. System performance of LTE and IEEE 802.11 coexisting on a shared frequency band [C] // 2013 IEEE Wireless Communications and Networking Conference (WCNC). Shanghai: IEEE, 2013: 1038-1043.
[18]   ANDREWS J G, BACCELLI F, GANTI R K, et al A tractable approach to coverage and rate in cellular networks[J]. IEEE Transactions on Communications, 2011, 59 (11): 3122- 3134
doi: 10.1109/TCOMM.2011.100411.100541
[19]   DHILLON, H. S., GANTI, R. K., BACCELLI, F, et al Modeling and analysis of K-tier downlink heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30 (3): 550- 560
doi: 10.1109/JSAC.2012.120405
[1] Fang WEI,Xiao-wen ZHAN. Delineation of rigid urban growth boundary based on habitat quality and carbon storage[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1478-1487.
[2] REN Yi-fei, LU Zhi-qiang, LIU Xin-yi, ZHANG Meng. Project scheduling problem with hierarchical levels of skills[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 1000-1006.
[3] LI Qing, HU Zhi hua. Reliable path selection after disaster based on multi objective genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 33-40.
[4] ZHOU Bing-hai, CHEN Jin-xiang, ZHAO Meng. Performance analysis for continuous flow transporters of Interbay AMHS with priority rules[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 296-302.
[5] SHOU Yong-yi, PENG Xiao-feng, LI Fei, LAI Chang-tao. Genetic algorithms for the preemptive resource-constrained project scheduling problem[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1473-1480.
[6] WANG Zheng-xin. Construction and application of variable-weight buffer operators with perfect information[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1120-1128.
[7] WANG Xiao-tun,XIONG Wei. Risk evaluation method in FMEA based on dependent linguistic
ordered weighted geometric operator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 182-188.
[8] ZHANG Yang, WANG Xiu-min, CHEN Hao-wei. FPGA based design of LDPC encoder[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1582-1586.
[9] KONG Xiang-Jie, CHEN Guo-Jiang, LIANG Tong-Hai. Intelligent coordinated control of traffic flow on road network  with bus-priority[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1026-1031.