Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 631-639    DOI: 10.3785/j.issn.1008-973X.2022.04.001
    
Model experimental study on influence of buried fault dislocation on shield tunnel
Han-yuan LI1,2(),Xing-gao LI1,2,*(),Ming-zhe MA1,2,Hao LIU3,Yi YANG1,2
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
3. Jinan Rail Transit Group Limited Company, Jinan 250101, China
Download: HTML     PDF(1711KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The model experiment on influence of buried fault dislocation on shield tunnel was conducted based on the longitudinal equivalent continuous model for shield tunnels in order to analyze the mechanical properties of shield tunnel structure and stratum failure mode under buried fault dislocation. The relationship between the longitudinal mechanical properties of the structure, the opening of circumferential joint and the fault dislocation was analyzed. The rationality of the model experiment result was verified by numerical simulation. The experimental and numerical results show that the longitudinal stress of tunnel structure changes obviously under buried fault dislocation, and the influence range of fault dislocation on the tunnel structure is within 60 m. The circumferential joints near the projection plane at the top of the fault obviously produce tensile deformation, and the circumferential joints are more likely to produce tensile deformation under normal fault dislocation. The longitudinal tunnel structure under normal fault dislocation is in eccentric tension state, and the longitudinal tunnel structure under reverse fault dislocation is in eccentric compression state. Shearing deformation occurs obviously in the strata under normal fault dislocation, and the propagation law of inverted triangular shearing deformation appears. The surface ground transverse cracks develop significantly. The shearing deformation of strata is relatively weak under reverse fault dislocation.



Key wordsshield tunnel      fault dislocation      force characteristic     
Received: 23 September 2021      Published: 24 April 2022
CLC:  U 459  
Fund:  国家重点基础研究发展计划资助项目(2015CB057800)
Corresponding Authors: Xing-gao LI     E-mail: 20115020@bjtu.edu.cn;lixg@bjtu.edu.cn
Cite this article:

Han-yuan LI,Xing-gao LI,Ming-zhe MA,Hao LIU,Yi YANG. Model experimental study on influence of buried fault dislocation on shield tunnel. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 631-639.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.001     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/631


隐伏断层错动对盾构隧道影响的模型试验研究

为了探究隐伏断层错动下盾构隧道结构受力特点及地层破坏模式,基于盾构隧道纵向等效连续化模型,开展隐伏断层错动对盾构隧道影响的模型试验. 研究隧道结构纵向受力特征、环缝接头张开量与断层错动的关系,采用数值模拟手段验证模型试验结果的合理性. 试验及数值计算结果表明,隐伏断层错动下隧道结构纵向受力变化明显,断层错动对隧道结构纵向受力的影响范围小于60 m. 在断层顶部投影面附近的盾构管片环缝存在明显的张拉变形,在正断层错动下盾构环缝接头更容易产生张拉大变形. 正断层错动工况下的隧道结构纵向呈偏心受拉状态,逆断层错动工况下的隧道结构纵向呈偏心受压状态. 在正断层错动下地层发生明显的剪切变形,呈现倒三角形剪切变形扩展规律,地表产生横向贯穿裂缝,逆断层错动下的地层剪切变形相对较弱.


关键词: 盾构隧道,  断层错动,  受力特征 
Fig.1 Fault simulation test device
物理量 相似关系 相似比
应力σ Cσ= CECε 1∶130
应变ε Cε 1
泊松比 Cμ 1
内摩擦角 Cφ 1
黏聚力 CC 1∶130
荷载F CF = CECL 2 1∶(1.17×105
弯矩M CM = CECL 3 1∶(3.51×106
Tab.1 Similarity ratio constant of model test
Fig.2 Tunnel structure model
取值 ηEmc/MPa D/m I/m4 w/mm 备注
理论值 12.3 0.213 3.29×10?5 9.57 30 N跨中集中荷载
实际值 12.1 0.210 3.15×10?5 10.33
Tab.2 Longitudinal stiffness parameter of model tunnel
地层 ρ/(kg·m?3) E/MPa c/kPa φ′/(°)
原型 20.8~23 45 50 35~40
模型 20.3 0.38 0.31 36
Tab.3 Physical and mechanical parameters of prototype and model soil
Fig.3 Layout instruction of monitoring sensor
Fig.4 Boundary condition and loading method of numerical model of cross-fault tunnel
Fig.5 Longitudinal strain of tunnel structure under normal fault dislocation
Fig.6 Longitudinal strain of tunnel structure under reverse fault dislocation
Fig.7 Longitudinal internal force of tunnel structure under normal fault dislocation
Fig.8 Longitudinal internal force of tunnel structure under reverse fault dislocation
Fig.9 Opening amount of segment circumferential joint under normal fault dislocation
Fig.10 Opening amount of segment circumferential joint under reverse fault dislocation
Fig.11 Longitudinal force status of tunnel structure under normal fault dislocation
Fig.12 Longitudinal force status of tunnel structure under reverse fault dislocation
Fig.13 Shearing deformation of stratum under normal fault dislocation
Fig.14 Shearing deformation of stratum under reverse fault dislocation
[1]   KIANI M, GHALANDARZADEH A, AKHLAGHI T, et al Experimental evaluation of vulnerability for urban segmental tunnels subject-ed to normal surface faulting[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 28- 37
doi: 10.1016/j.soildyn.2016.07.012
[2]   KIANI M, AKHLAGHI T, GHALANDARZADEH A Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108- 119
doi: 10.1016/j.tust.2015.10.005
[3]   LIU X, LI X, SANG Y, et al Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 417- 425
doi: 10.1016/j.tust.2015.05.010
[4]   CAI Q P, PENG J M, NG C W W, et al Centrifuge and numerical modeling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 106: 108- 116
doi: 10.1016/j.compgeo.2018.10.019
[5]   胡志平, 彭建兵, 王启耀, 等 盾构隧道60°斜穿地裂缝的变形破坏机制试验研究[J]. 岩石力学与工程学报, 2010, 29 (1): 176- 183
HU Zhi-ping, PENG Jian-bing, WANG Qi-yao, et al Modeling test research on failure mechanism of shield tunnel crossing ground fissure with 60°[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (1): 176- 183
[6]   胡志平, 彭建兵, 黄强兵, 等 地铁盾构隧道30°斜穿地裂缝的物理模拟试验[J]. 长安大学学报: 自然科学版, 2009, 29 (4): 63- 68
HU Zhi-ping, PENG Jian-bing, HUANG Qiang-bing, et al Physical modeling test on shield tunnel crossing ground fissure with 30°[J]. Journal of Chang’an University: Natural Science Edition, 2009, 29 (4): 63- 68
[7]   孙飞, 张志强, 易志伟 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 40 (8): 3037- 3044
SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics, 2019, 40 (8): 3037- 3044
[8]   刘学增, 王煦霖, 林亮伦 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30 (12): 2523- 2530
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun Research on model experiment of effect of thrust fault with 75° dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (12): 2523- 2530
[9]   张煜. 断层蠕滑错动作用下隧道衬砌损伤开裂研究及柔性连接抗错断措施 [D]. 成都: 西南交通大学, 2016.
ZHANG Yu. Research on tunnel lining damage and crack induced by fault creep and anti-breaking measure of flexible connector [D]. Chengdu: Southwest Jiaotong University, 2016.
[10]   安韶, 陶连金, 边金, 等 逆断层错动作用下地铁隧道结构损伤分析[J]. 湖南大学学报: 自然科学版, 2020, 47 (7): 147- 156
AN Shao, TAO Lian-jin, BIAN Jin, et al Damage analysis on subway tunnel structure under effect of reverse fault dislocation[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (7): 147- 156
[11]   SHIBA Y, KAWASHIMA K, OBINATA N, et al An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988, 398: 319- 327
[12]   徐凌. 软土地层盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2002.
XU Ling. Longitudinal settlement of shield tunnel in soft ground [D]. Shanghai: Tongji University, 2002.
[13]   廖少明. 圆形隧道纵向剪切传递效应研究 [D]. 上海: 同济大学, 2002.
LIAO Shao-ming. Longitudinal shear transfer effects study of shield tunnel [D]. Shanghai: Tongji University, 2002.
[14]   叶飞, 何川, 朱合华, 等 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33 (12): 1870- 1876
YE Fei, HE Chuan, ZHU He-hua, et al Longitudinal equivalent rigidity analysis of shield tunnel considering transverse characteristics[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (12): 1870- 1876
[15]   李翔宇, 刘国彬, 杨潇, 等 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36 (4): 662- 670
LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 662- 670
doi: 10.11779/CJGE201404010
[16]   张景, 何川, 耿萍, 等 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36 (1): 68- 77
ZHANG Jing, HE Chuan, GENG Ping, et al Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (1): 68- 77
[1] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[2] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[3] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[4] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[5] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[6] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[7] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[8] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[9] LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, ZHU Ji, CHEN Ren-peng. Supporting pressure for earth pressure balance tunnel face stability
when tunneling is implemented in saturated sandy soil
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 665-671.
[10] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2215-2223.
[11] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[12] TENG Tao, XIA Yi-min, YANG Wu-zi, TAN Qing. Characteristics analysis of pressure impact absorption for
shield cutter head drive hydraulic system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 864-868.
[13] GENG Tong, YANG Hua-Yong, GONG Guo-Fang. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 358-363+372.