Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1444-1449    DOI: 10.3785/j.issn.1008-973X.2013.08.018
    
Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine
SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The thrust hydraulic system is likely to suffer from an impact load when the shield tunneling machine is excavating through the unexpected geological stratum. In order to solve this problem, the compliance of a thrust hydraulic system and related evaluating values were proposed. The compliance process of the thrust hydraulic system to sudden load was illustrated. Four influential factors of the system compliance were investigated, including fluid bulk modulus, pressure valve parameters, pipeline length and accumulator volume. The evaluation method of the thrust hydraulic system operating under the specified geological condition was proposed based upon compliance index. A case study was carried out by evaluating the compliance of two typical types of existing thrust hydraulic systems under a given geological condition quantitively. Results showed that the compliance of the system with flow control valve is better than that with pressure reduced valve, and the compliance index is improved from 1.08 to 1.27. The compliance and its evaluation method will be helpful to design a compliance based thrust hydraulic system for shield tunneling machine.



Published: 01 August 2013
CLC:  TH 137  
Cite this article:

SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine. J4, 2013, 47(8): 1444-1449.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.08.018     OR     http://www.zjujournals.com/eng/Y2013/V47/I8/1444


盾构推进液压系统载荷顺应性指标和评价方法

针对盾构在极端地质环境中掘进时推进液压系统易遭受突变载荷的工程问题,提出盾构推进液压系统突变载荷顺应性的定义及其评价指标.描述推进液压系统突变载荷顺应机理,分析油液体积弹性模量、压力阀、管道及蓄能器4个关键因素对系统顺应性的影响规律.基于顺应指标形成面向特定地质环境的推进液压系统载荷顺应性评价方法,定量评价2类现有典型推进液压系统在给定地质条件下的突变载荷顺应性.结果表明,比例调速阀系统较比例减压阀系统具有更好的突变载荷顺应效果,可将顺应性从1.08提高至1.27.顺应性指标及其评价方法为基于顺应性的推进液压系统设计提供理论依据.

[1] 胡国良,龚国芳,杨华勇,等.盾构掘进机模拟试验台液压系统集成及实验分析[J].农业机械学报, 2005, 36(12): 10105.

HU Guo-liang, GONG Guo-fang, YANG Hua-yong, et al. Hydraulic system integration and experimental analysis of shield tunneling machine for simulator test rig [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12): 10105.

[2] 刘国斌,龚国芳,周如林,等.盾构掘进机液压系统参数匹配特性[J].浙江大学学报:工学版, 2011, 45(10): 1809-1814.

LIU Guo-bin, GONG Guo-fang, ZHOU Ru-lin, et al. Parameters accouplement of hydraulic system of earth pressure balance shield machine [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(10): 1809-1814.

[3] 施虎,龚国芳,杨华勇,等.盾构掘进机推进力计算模型.浙江大学学报: 工学版, 2011, 45(1): 126-131.

SHI Hu, GONG Guo-fang, YANG Hua-yong, et al. Determination of thrust force for shield tunneling machine [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(1): 126131.
[4] 杨文玉,孟富明.锻造操作机顺应性能评价与优化方法[J].机械工程学报,2010, 46(23):121-128.

YANG Wen-yu, MENG Fu-ming. Evaluating and optimization method of forging manipulator compliance [J]. Journal of Mechanical Engineering, 2010, 46(23): 121-128.

[5] LOREDANA Z, BRUNO S, CECILIAE L, et al. An experimental study on compliance control for a redundant personal robot arm [J]. Robotics and Autonomous Systems. 2003, 44(2): 101-129.

[6] 施虎.盾构掘进系统电液控制技术及其模拟试验研究[D].杭州:浙江大学,2012.

SHI Hu. Investigation into electrohydraulic control systems for shield tunneling machine and simulated experiment method [D]. Hangzhou: Zhejiang University, 2012.

[7] 冯斌,龚国芳,杨华勇.液压油弹性模量提高方法与试验[J]. 农业机械学报, 2010, 41(3): 219-222.

FENG Bin, GONG Guo-fang, YANG Hua-yong. Method and experiment for increasing effective fluid bulk modulus in hydraulic systems [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(3): 219-222.

[8] 刘伟,杨华勇,徐兵,等.高压断路器液压操动机构管道特性研究[J].农业机械学报,2010,41(1): 182-187.

LIU Wei, YANG Hua-yong, XU Bing, et al. Pipe characteristics of high voltage circuit breaker with hydraulic operating mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 182-187.

[9] 沈海阔,智少丹,金波.基于能量调节的电液变频速度控制系统[J].农业机械学报,2012, 43(4):197-201.

SHEN Hai-kuo, ZHI Shao-dan, JIN Bo. Variable frequency electro-hydraulic velocity control system based on energy regulation strategy [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 187-201.

[10] 胡国良.盾构模拟试验平台电液控制系统关键技术研究[D].杭州:浙江大学,2006

HU Guo-liang. Research into electro-hydraulic control system for a simulator test rig of shield tunneling machine [D]. Hanghou: Zhejiang University, 2006.

[11] 庄欠伟.土压平衡式盾构电液控制系统集成技术及其应用[D].杭州:浙江大学,2005.

ZHUANG Qian-wei. Integration technology and application of electro-hydraulic control system for earth pressure balanced shield [D]. Hangzhou: Zhejiang University, 2005.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[5] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[6] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[7] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[8] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[9] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[10] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[11] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[12] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[13] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[14] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. J4, 2011, 45(11): 1934-1940.
[15] HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive[J]. J4, 2011, 45(11): 1927-1933.