Please wait a minute...
J4  2013, Vol. 47 Issue (3): 522-527    DOI: 10.3785/j.issn.1008-973X.2013.03.018
    
Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao
State Key Laboratory of Fluid Power and Control,Zhejiang University,Hangzhou 310027,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the complexity and changeability of geology and prone to large unbalanced and sudden loads during shield excavation, the concept and evaluation index of compliance of shield propulsion system was proposed. The calculation model of compliance was established based on parameterization analysis of propulsion system, then the compliance of propulsion system was calculated taking a certain 3.2 m domestic shield prototype for example. Compliance of four different types of shield propulsion system, including speed regulation and overflow mode, reduced pressure combined with large grouping overflow mode, reduced pressure combined with tiny grouping overflow mode and reduced pressure combined with main oil way overflow mode, was calculated under Matlab/Simulink simulation environment. In order to verify the compliance effect of shield propulsion system, evaluation and analysis of the compliance effect were carried out based on the actual loads met in a certain domestic metro engineering. The calculation results of the compliance and the evaluation of compliance effect both indicated that big differences existed in compliance among these four typical shields under the same sudden load, and the compliance was related to relief component, grouping pattern, working parameters and pipe layout of propulsion system. Therefore, the compliance of propulsion hydraulic system can be regarded as an index weighing the capacity that shield sustaining external sudden load, providing the compliance design philosophy and optimization objective for the new generation shield propulsion system.



Published: 01 March 2013
CLC:  TH 137  
Cite this article:

HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load. J4, 2013, 47(3): 522-527.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.03.018     OR     http://www.zjujournals.com/eng/Y2013/V47/I3/522


盾构推进系统突变载荷顺应特性研究

针对盾构掘进过程中地质复杂多变、易出现大偏载及突变载荷的情况,提出了盾构推进系统顺应性概念及其评价指标,并基于对推进系统的参数化分析建立了顺应性计算模型,以某国产3.2 m盾构实验样机为例计算了推进系统顺应性. 在Matlab/Simulink仿真环境中,根据顺应性模型对调速溢流模式、减压大分区溢流模式、减压小分区溢流模式、减压主路溢流模式4种不同型式盾构推进系统进行了顺应性计算.为了验证盾构推进系统顺应效果,以某地铁工程遇到的实际负载为标准对4种盾构推进系统进行了顺应性效果评价分析.顺应性计算结果和顺应效果评价均表明:在同一突变载荷下4种不同型式盾构推进系统顺应性存在较大差别,顺应性与推进系统溢流元件、分区方式、工作参数、管道布置有关.推进液压系统顺应性可以作为衡量盾构承受外界突变载荷能力的指标,为新一代盾构推进系统研发设计提供了顺应性设计原则和优化目标.

[1] 胡国良,龚国芳,杨华勇.基于压力流量复合控制的盾构推进液压系统[J].机械工程学报,2006,42(6):124.
HU Guo-liang,GONG Guo-fang,YANG Hua-yong.The propulsion hydraulic system of shield tunneling machine based on pressure and flow compound control [J].Chinese Journal of Mechanical Engineering, 2006, 42(6):124.
[2] 曾晓星. 异质岩土工况下土压平衡盾构载荷等效及传递特性研究[D].上海:上海交通大学,2009:1-2.
ZENG Xiao-xing. Study on the loads equivalence and transferring behavior of the EPB shield machines penetrating in the heterogeneous geological conditions [D].Shanghai: Shanghai Jiaotong University, 2009: 1-2.
[3] 张凯之,余海东,来新民.复合地层中掘进的盾构机刀盘动态驱动转矩研究[J].中国机械工程,2008,21(6):643-647.
ZHANG Kai-zhi,YU Hai-dong,LAI Xin-min. Study on dynamic cutter head driving torque of shield tunneling in composite strata[J].China Mechanical Engineering, 2008,21(6):643-647.
[4] 邓颖聪. 盾构推进系统的分区建模与性能评价[D]. 上海:上海交通大学,2010:23-25.
DENG Ying-cong. Modeling and performance assessment for the grouping of the thrust system of the shield machine [D].Shanghai: Shanghai Jiaotong University, 2010:23-25.
[5] 熊有伦. 机器人操作[M]. 湖北:湖北科技出版社, 2002:180.
[6] KLABUNDE R E. Cardiovascular Physiology Concepts [M].Ohio: Lippincott Williams & Wilkins, 2004.
[7] ELMARAGHY H A , JOHNS B. An investigation into the compliance of SCARA robots. Part I: Analytical model[J]. Journal of Dynamic Systems, Measurement and Control, 1988, 110(3):18-22.
[8] 赵凯. 锻造操作机缓冲过程仿真与顺应性评价[D].上海:上海交通大学,2009:54-67.
ZHAO Kai. Simulation and evaluation of the compliance process for forging manipulators[D].Shanghai: Shanghai Jiaotong University, 2009:54-67.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[7] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[8] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[9] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[10] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[11] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[12] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[13] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[14] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. J4, 2011, 45(11): 1934-1940.
[15] HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive[J]. J4, 2011, 45(11): 1927-1933.