Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (2): 358-366    DOI: 10.3785/j.issn.1008-973X.2018.02.019
Civil and Traffic Engineering     
Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining
YANG Chun-shan1, WEI Li-xin1, MO Hai-hong2, HE Ze-gan1
1. Guangzhou Municipal Engineering Design and Research Institute, Guangzhou 510060, China;
2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China
Download:   PDF(6629KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The transverse rigidity ratio considering staggered installation effect, the differential deformation coefficient and joint rigidity correction coefficients were proposed aioring at the problem that the calculation of longitudinal equivalent rigidity has not considered differential deformation, longitudinal joint characteristics and enhancement caused by staggered installation. Then the calculation formula of longitudinal equivalent rigidity of shield tunnel was deduced combined with numerical method in order to conduct example analysis. The sensitivity of longitudinal rigidity to correction parameters was explored. Results show that the horizontal deformation of lining is 15% smaller than vertical deformation under the transverse action, so it is defective to assume the same deformation in two directions of segment ring. The difference of segment opening is 17.6% when calculation uses actual joint of segment rings or equivalent homogeneous bolt under the same load, and the indispensable error appears during the longitudinal bending calculation when equivalent homogeneous bolt represent the actual joints of shield tunnel. The transverse rigidity increases by 17.5% caused by staggered installation, which causes obvious influence on longitudinal rigidity. Equivalent rigidity difference is 14.3% when calculation considers differential deformation, joints characteristics and transverse rigidity or not, and the influence of rigidity difference on longitudinal structure characteristics is significant. The longitudinal equivalent rigidity linearly decreases with the increase of the differential deformation, and increases with the increase of the joint rigidity correction and transverse rigidity ratio in a linear relation.



Received: 04 January 2017      Published: 09 March 2018
CLC:  U45  
Cite this article:

YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 358-366.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.02.019     OR     http://www.zjujournals.com/eng/Y2018/V52/I2/358


考虑衬砌变形与接头特征的盾构隧道纵向刚度

针对盾构隧道纵向刚度计算未考虑衬砌差异变形、接头特征及错缝拼装增强效应,定义考虑错缝拼装作用的横向刚度有效率,提出衬砌差异变形系数与接头等效刚度修正系数.推导盾构隧道纵向等效刚度计算式并结合数值法开展算例分析,探讨纵向等效刚度对不同修正系数的敏感性.研究表明:衬砌结构承载时,水平变形较竖向变形小15%,假定两方向变形相同存在不足;利用实际接头和等效螺栓环计算管片环缝张开量相差17.6%,接头等效为螺栓环存在不容忽视的误差;衬砌错缝拼装使横向刚度提高了17.5%,对隧道纵向刚度影响显著;盾构隧道纵向刚度计算中,考虑衬砌差异变形、接头特征及横向刚度与否对应的等效刚度相差14.3%,对隧道纵向结构特性产生了明显的影响;隧道纵向刚度随着衬砌差异变形的增大近似线性减小,且随接头等效刚度修正值和横向刚度同向线性变化.

[1] MURAKAMI, KOIZUMI A. Study on load bearing eapacity and mechanics of shield segment ring[J]. Proc for the Japan Society for Civil Engineering, 1978, 272(4):103-115.
[2] YUKIS S K N. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Proceedings of the Japan Society of Civil Engineering, 1988:385-394.
[3] 田敬学, 张庆贺. 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001, (3):37-39. TIAN Jing-xue, ZHANG Qing-he. Calculation of longitudinal rigidity of shield tunnels[J]. China Municipal Eng-Ineering, 2001, (3):37-39.
[4] 叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 12(3):1870-1876. YE Fei, HE Chuan, ZHU He-hua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transiverse characteristics[J]. Chinese Journal of Geote-chnical Engineering, 2011, 12(3):1870-1876.
[5] 张文杰, 徐旭, 李向红, 等. 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学, 2009, 28(增2):3938-3944. ZHANG Wen-jie, XU Xu, LI Xiang-hong, et al. Research on generalized longitudinal equivalent continous model of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Supp2):3938-3944.
[6] 李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4):662-670. LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):662-670.
[7] 廖少明, 侯学渊, 彭乐芳. 隧道纵向剪切传递效应及其一维解析[J]. 岩石力学与工程学报, 2006, 24(7):1110-1116. LIAO Shao-ming, HOU Xue-yuan, PENG Le-fang. Longitudinal shear transfer of tunnel and its 1d analytical solution[J]. Chinese Journal of Rock Mechanics and Eng ineering, 2006, 24(7):1110-1116.
[8] 黄宏伟, 徐凌, 严佳梁, 等. 盾构隧道横向刚度有效率研究[J]. 岩土工程学报, 2006, 28(1):11-18. HUANG Hongwei, XU Ling, YAN Jialiang, et al. Study on transverse effective rigidity ratio of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1):11-18.
[9] 叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1):83-90. YE Fei, YANG Peng-bo, MAO Jia-hua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):83-90.
[10] LEE K M, Y H X, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(4):365-390.
[11] LEE K M, GE X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering, 2001, 38:461-483.
[12] 彭益成, 丁文其, 闫治国, 等. 修正惯用法中弯曲刚度有效率的影响因素分析及计算方法[J]. 岩土工程学报, 2013, 35(增1):495-500. PENG Yi-cheng, DING Wen-qing, YAN Zhi-guo, et al. Analysis and calculation method of effective bending rigidity ratio in modified routine method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Supp1):495-500.
[13] 杨春山, 莫海鸿, 陈俊生, 等. 盾构隧道先隧后井施工法对管片张开量的影响研究[J].岩石力学与工程学报, 2014, 33(增1):2870-2877. YANG Chun-shan, Mo Hai-hong, Chen Jun-sheng, et al. Influence of shield tunneling with tunnels followed by well excavation on segment opening[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(supp1):2870-2877.
[14] YANG Chun-shan,MO Hai-hong, CHEN Jun-sheng, et al. Numerical analysis of influence caused by lining cracks on dynamic response of shield tunnel during metro operation[J]. Journal of information and computational science, 2014, 11(11):3835-3846.
[15] YANG Chun-shan, MO Hai-hong, CHEN Jun-sheng, et al. Numerical study on material optimization of the composite lining of shield tunneling[J]. Electronic Journal of Geotechnical Engineering, 2013, 18R:3813-3824.
[16] 莫海鸿, 杨春山, 陈俊生, 等. 盾构隧道先隧道后井施工中工作井支护结构优化[J]. 中南大学学报:自然科学版, 2016, 47(4):1346-1352. MO Hai-hong, YANG Chun-shan, CHEN Jun-sheng, et al. Supporting optimization of working well in shield construction with tunnel followed by well excavation[J]. Journal of Central South University:Science and Technology, 2016, 47(4):1346-1352.
[17] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1):132-136. ZHONG Xiao-chun, ZHANG Jin-rong, QIN Jian-she, et al. Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors' analysis[J]. Rock and Soil Mechanics, 2011, 32(1):132-136.

[1] WU Chang-sheng, ZHU Zhi-duo. Statistical analysis of ground loss ratio caused by different tunnel construction methods in China[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 19-30.
[2] DING Zhi, WANG Fan-yong, WEI Xin-jiang. Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 61-68.
[3] LI Lin-yi, YANG Jun-sheng, ZHANG Zheng, MA Yan-na, ZHANG Cong, BAO De-yong. Analytical study of seepage field of deep-buried central ditch drainage tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2050-2057.
[4] DING Zhi, ZHANG Xiao, ZHOU Lian-ying, CHEN Zi-hai. Research and prospect of interaction between close bridge pile and metro tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1943-1953.
[5] LUO Hua, CHEN Zu-yu, GONG Guo-fang, ZHAO Yu, JING Liu-jie, WANG Chao. Advance rate of TBM based on field boring data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1566-1574.
[6] PAN Yi-heng, LUO Qi-qi, ZHOU Bin, CHEN Jian-ping. Analytical study on seepage field of deep tunnel with grouting circle in half plane[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1114-1122.
[7] LIU Xin-rong, LIU Jun, HUANG Lun-hai, WANG Zi-juan, CHEN Hong-jun, FENG Yan. Model test and pressure arch analysis for excavation of loess double arch tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1140-1149.
[8] LIN Lai-kuang, XIA Yi-min, JIA Lian-hui, HE Fei, YANG Mei, YANG Kai. Influence of installation and tunnelling parameters on rock-breaking resistance of disc cutter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1209-1215.
[9] ZHANG Jia-qi, LI Shu-cai, ZHANG Xiao, ZHANG Qing-song, LI Peng, YU Hai-yang. Model test on grouting diffusion in rock and soil layered medium[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 914-924.
[10] ZHANG Zi-xin, SUN Jie, ZHU Yan-fei, HUANG Xin, YUAN Wei-hao. Experimental study on waterproof performance of joint seal for deeply-buried storage and drainage tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 431-439.
[11] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 440-445.
[12] LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, WU Wen-bing, FANG Yu-xiang, XIA Tang-dai, CHENG Kang. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 420-430.
[13] WANG Chao, GONG Guo-fang, YANG Hua-yong, ZHOU Jian-jun, DUAN Li-wen, ZHANG Ya-kun. NSVR based predictive analysis of cutterhead torque for hard rock TBM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 479-486.
[14] XIA Yi-min, QIAN Cong, LI Zheng-guang, Mei Yong-bing. Vibration characteristics of TBM supporting-thrusting system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 233-239.
[15] YU Yang, XU Chang-jie, ZHU Chen, XU Qian. Spatial fractal research of micro-seismic events associated with rockburst hazard[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2175-2181.