Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (6): 1140-1149    DOI: 10.3785/j.issn.1008-973X.2018.06.013
Civil and Traffic Engineering     
Model test and pressure arch analysis for excavation of loess double arch tunnel
LIU Xin-rong1, LIU Jun1,2, HUANG Lun-hai3, WANG Zi-juan4, CHEN Hong-jun1, FENG Yan5
1. College of Civil Engineering, Chongqing University, Chongqing 400045, China;
2. The Fifth Engineering Co. Ltd of China Railway 11 Bureau Group Co. Ltd, Chongqing 400037, China;
3. China Merchants Chongqing Communications Research and Design Institute Co. Ltd, Chongqing 400067, China;
4. School of Management, Chongqing Technology and Business University, Chongqing 400067;
5. China Construction Tunnel Engineering Co. Ltd, Chongqing 401320, China
Download:   PDF(5376KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The displacement of tunnel contour, the stress of the surrounding rock and pressure arch distribution during the whole process of excavation were studied, according to the complex mechanical properties of construction of the loess double-arch tunnel. A large-scale indoor model test was carried out to simulate the excavation of middle pilot tunnel method in the loess double-arch tunnel. The data of the displacement of tunnel contour and radial and circumferential stress were collected by relative monitoring instruments. Moreover, the finite difference software was used to further analyze the displacement and pressure arch of the excavation process. Results indicate that with the different drifts of loess arch tunnel excavation, the displacement-time curve of each monitoring point develops in the form of step shape. And each step growth corresponds to the displacement mutation of each drift initial excavation. The pressure arch of the loess double-arch tunnel is larger than the double-arch tunnel of the same grade surrounding rock. When the first pilot tunnel excavation is completed, the pressure arch of the tunnel vault is about 1D(D is the height of the tunnel). When the single tunnel excavation is completed, the pressure arch of the tunnel vault is about 1.5D. From the first pilot tunnel excavation to double tunnels completion, the pressure arch of the upper middle wall of the surrounding rock ranges from 0.5D to 1D, 0.5D and 1D. The stress redistribution is formed, thus the upper middle wall of the surrounding rock should be timely grouting or into the anchor reinforcement.



Received: 11 February 2017      Published: 20 June 2018
CLC:  U456  
Cite this article:

LIU Xin-rong, LIU Jun, HUANG Lun-hai, WANG Zi-juan, CHEN Hong-jun, FENG Yan. Model test and pressure arch analysis for excavation of loess double arch tunnel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1140-1149.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.06.013     OR     http://www.zjujournals.com/eng/Y2018/V52/I6/1140


黄土连拱隧道开挖的模型试验与压力拱分析

针对黄土连拱隧道复杂的施工力学特性,研究黄土连拱隧道动态开挖全过程中隧道轮廓位移、围岩的应力及压力拱分布规律.通过大型室内模型试验模拟黄土连拱隧道中的导洞开挖,利用相关监测元件对隧道轮廓位移、围岩的径向及环向应力进行采集和分析;采用有限差分软件对开挖过程的位移及压力拱进一步分析.研究表明:随着黄土连拱隧道不同导洞的开挖,各监测点位移时程曲线总体形状呈台阶形增长,且各台阶的增长对应各导洞初期开挖的位移突变;黄土连拱隧道的压力拱范围比同等级围岩的连拱隧道更大,先行导洞开挖完时,其拱顶压力拱大约为1DD为隧道洞高),单洞开挖完时,其拱顶压力拱范围大约1.5D;从第一先行导洞开挖到双洞完成,中隔墙上部围岩压力拱范围经历了0.5D→1D→0.5D→1D的变化,形成了多次应力重分布,对此范围的围岩应及时注浆或打入锚杆,加强支护.

[1] 邱长林,刘彬,何林生等.整体式中隔墙连拱隧道模型试验及现场监测[J].岩土力学,2012,33(9):2625-2631. QIU Chang-lin, LIU Bin, HE Lin-sheng et al. Model test and in-situ monitoring of double-arch tunnel with integrated middle wall[J]. Rock and Soil Mechanics, 2012, 33(9):2625-2631.
[2] 刘涛,沈明荣,陶履彬,等.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J].岩石力学与工程学报,2006,25(9):1802-1808. LIU Tao, SHEN Ming-rong, TAO Lv-bin, et al. Model test and 3d numerical simulation study on excavation of double-arch tunnel[J]. Chinese Journal of RockMechanics and Engineering, 2006, 25(9):1802-1808.
[3] 肖林萍,赵玉光,申玉生,等.双连拱隧道结构内力样式及围岩稳定性模型试验研究[J].岩石力学与工程学报,2005,24(23):4346-4351. XIAO Lin-pin, ZHAO Yu-guang, SHEN Yu-sheng, et al. Model experimental study on style of structural internal force and stability of surrounding rock in double-arch tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23):4346-4351.
[4] 李树忱,袁超,李术才,等.极浅埋连拱隧道施工过程围岩力学行为的模型试验研究[J].煤炭学报,2012,37(5):713-718. LI Shu-chen, YUAN Chao, LI Shu-cai, et al. Model test dtudy on mechanical behavior of extremely shallow double-arch tunnel during excavation[J]. Journal of China Coal of Society, 2012, 37(5):713-718.
[5] 吴梦军.大跨扁平连拱隧道施工时空效应与二次衬砌最佳支护时机研究[D].重庆:重庆大学, 2011. WU Meng-jun. Study on construction space-time effect and optimal supporting time of large span and flat multi-arch tunnel[D]. Chongqing:Chongqing University,2011.
[6] 白浪峰,徐前卫,田龙岗,等.软弱破碎连拱隧道松动区模型试验与分析[J].岩石力学与工程学报,2013,32(增2):3610-3618. BAI Lang-feng, XU Qian-wei, TIAN Long-gang, et al. Model test and analysis of loose zone in soft and cracked surrounding rock of multi-arch tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl. 2):3610-3618.
[7] CHU B L, HSU S C, CHANG Y L, et al. Mechanical behavior of a twin-tunnel in multi-layered formations[J]. Tunnelling and Underground Space Technology, 2007, 22(3):351-362.
[8] 季毛伟,吴顺川,高永涛,等.双连拱隧道施工监测及数值模拟研究[J].岩土力学,2011,32(12):3787-3795. JI Mao-wei, WU Shun-chuan, GAO Yong-tao, et al. Construction monitoring and numerical simulation of multi-arch tunnel[J]. Rock and Soil Mechanics, 2011, 32(12):3787-3795.
[9] CHEHADE F H, SHAHROUR I. Numerical analysis of the interaction between twin-tunnels:influence of the relative position and construction procedure[J]. Tunnelling and Underground Space Technology, 2008,23(2):210-214.
[10] DO N A, DIAS D, ORESTE P, et al. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground[J]. Tunnelling and Underground Space Technology, 2014, 42:40-51.
[11] AFIFIPOUR M, HARIFZADEH M, SHAHRIAR K, et al. Interaction of twin tunnels and shallow foundation at Zand underpass, Shiraz metro, Iran[J]. Tunnelling and Underground Space Technology, 2011,26(2):356-363.
[12] WANG S Y, YANG J S, YANG Y H, et al. Construction of large-span twin tunnels below a high-rise transmission tower:a case study[J]. Geotechnical and Geological Engineering, 2014, 32(2):453-467.
[13] 钟祖良,刘新荣,刘元雪,等.黄土连拱隧道动态施工围岩损伤局部化研究[J].岩土力学,2012, 33(2):611-616. ZHONG Zu-liang, LIU Xin-rong, LIU Yuan-xue, et al. Study of damage localization of loess multi-arch tunnel's surrounding rock under dynamic construction[J]. Rock and Soil Mechanics, 2012, 33(2):611-616.
[14] 申玉生,赵玉光.双连拱隧道围岩稳定性的模糊概率分析研究[J].岩土工程学报,2005,27(11):1358-1361. SHEN Yu-sheng, ZHAO Yu-guang. Research on fuzzy probability analysis of stability of surrounding rock in double-arch tunneling[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1358-1361.
[15] 钟祖良,刘新荣,袁飞,等.仰拱一次性开挖长度对黄土连拱隧道稳定性影响研究[J].岩土工程学报,2008,30(3):462-466. ZHONG Zu-liang, LIU Xin-rong, YUAN Fei, et al. Effect of excavation length of inverted arch in one step on stability of multi-arch tunnels in loess[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3):462-466.
[16] 来弘鹏,刘苗,谢永利.黄土地区浅埋暗挖三连拱地铁隧道围岩压力特征研究[J].岩石力学与工程学报,2011(增1):3103-3111. LAI Hong-peng, LIU Miao, XIE Yong-li. Study of surrounding rock pressure characteristics of shallow excavation threee-arch metro tunnel in loess region[J]. Chinese Journal of Rock Mechanics and Engineering, 2011(Suppl.1):3103-3111.
[17] 赖金星,余德强,冯志华,等.黄土连拱隧道支护结构力学特性现场试验[J].现代隧道技术,2017(5):180-191. LAI Jin-xing, YU De-qiang, FENG Zhi-hua, et al. Mechanical characteristics of a multi-arch tunnel support structure in loess[J]. Modern Tunnelling Technology, 2017(5):180-191.
[18] 刘俊,刘新荣,赖勇,等.不同覆跨比下浅埋软弱隧道的破坏模式[J].中南大学学报:自然科学版,2016,47(5):1744-1751. LIU Jun, LIU Xin-rong, LAI Yong, et al. Failure mode of shallow-buried weak tunnel under different thickness-span ratios[J]. Journal of Central South University:Science and Technology, 2016, 47(5):1744-1751.
[19] 朱合华,黄锋,徐前卫.变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J].岩石力学与工程学报,2010,29(6):1113-1122. ZHU He-hua, HUANG Feng, XU Qian-wei. Model test and numerical simulation for progressive failure of weak and fractured tunnel surrounding rock under different overburden depths[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6):1113-1122.
[20] 郑颖人,徐浩,王成,等.隧洞破坏机理及深浅埋分界标准[J].浙江大学学报:工学版,2010,44(10):1851-1856. ZHENG Ying-ren, XU Hao, WANG Cheng, et al. Failure mechanism of tunnel and dividing line standard between shallow and deep bury[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(10):1851-1856.

No related articles found!