Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 118-125    DOI: 10.3785/j.issn.1008-973X.2020.01.014
Civil Engineering, Transportation Engineering     
Experimental study on prediction of long-term durability of sealing gasket of shield tunnel
Zi-xin ZHANG1,2(),Jia-qi ZHANG1,2,Xin HUANG1,2,*(),Qian-wei ZHUANG3
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
3. Shanghai Shield and Research Center Limited Company, Shanghai 200137, China
Download: HTML     PDF(1183KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The thermal oxygen-aging experiment was conducted in order to establish an aging coefficient model of rubber of the elastic gasket of shield tunnel. The elongation to stress ratio was used as a performance degradation index in the model, which can predict the performance of rubber at different temperatures and time. Long-term service states of gasket were simulated, and waterproofing tests were conducted to analyze the influence of service time and opening amount on waterproofing ability. Results show that tensile strength of rubber decreases rapidly under the influence of elongation at break in the early aging stage, then the dominant factor changes to the tensile modulus. Aging coefficient declines with time, and the rate of decline gradually decreases. The aging coefficient is 0.364 after 100 years of service. Waterproofing pressure-reduction coefficient of gasket declines with the decrease of the opening amount and is generally smaller than the aging coefficient. An empirical model predicting waterproofing pressure-reduction coefficient was established with service time and opening amount as independent variables based on the experimental data.



Key wordsshield tunnel      joint waterproof      Ethylene Propylene Diene Monomer (EPDM)      aging coefficient      opening amount      service time      performance prediction     
Received: 22 February 2019      Published: 05 January 2020
CLC:  U 451  
Corresponding Authors: Xin HUANG     E-mail: zxzhang@tongji.edu.cn;xhuang@tongji.edu.cn
Cite this article:

Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/118


盾构隧道密封垫长期防水性能预测的试验研究

为了建立盾构隧道弹性密封垫橡胶的老化系数模型,开展热氧加速老化试验. 该模型采用伸长率与应力的比值作为性能劣化指标,可以预测橡胶在不同温度和时间状态下的性能,对密封垫的长期服役状态进行预测. 通过一系列水密性试验,研究密封垫防水能力受服役时间和张开量的影响规律. 研究结果表明,橡胶的拉伸强度在老化前期受拉断伸长率变化的影响迅速下降,后期主导因素转变为拉伸模量;老化系数随着时间的增加而持续下降,但下降速度逐渐减小,最终服役百年后的老化系数为0.364;密封垫耐水压折减系数随着张开量的减小而降低,总体上小于老化系数. 基于试验结果,建立以服役时间和张开量为自变量的耐水压折减系数的预测公式.


关键词: 盾构隧道,  接缝防水,  三元乙丙橡胶(EPDM),  老化系数,  张开量,  服役时间,  性能预测 
指标 指标值
H/(°) 62±5
Ts/MPa ≥10.5
Eb/% ≥350
防霉等级 ≥1级
?H/(°)(热空气老化70 °C×96 h) ≤+6
?Ts$T_{\rm{s}}^{-1} $/%(热空气老化70 °C×96 h) ≥?15
?Eb$E_{\rm{b}}^{-1} $/%(热空气老化70 °C×96 h) ≥?30
Tab.1 Performance index of EPDM
老化指标 指标值
T/K 358、373、398、423
t/h 0、8、24、48、72、96、168
Tab.2 Aging conditions of rubber samples
Fig.1 Samples of condition of 358 K-8 h
Fig.2 Change of elongation at breakage of testing samples
Fig.3 Change of tensile strength of testing samples
项目 H/(°) Ts/MPa Eb/%
未老化 62.3 14.80 576.08
343 K、96 h处理 64.9 13.56 489.92
Tab.3 Aging performance indexes of rubber samples
Fig.4 Elongation - stress curve
Fig.5 Variation of performance degradation index
B A r $E/R$ R2
1 1 963.846 0.416 3 886.865 0.985
Tab.4 Fitting parameters of aging coefficient model
t/y fp t/y fp
0 1 50 0.469
5 0.748 75 0.408
10 0.679 100 0.364
30 0.542
Tab.5 Aging coefficients at different service times
Fig.6 Cross-section of elastic gasket
指标 指标值
H/(°) 65±3
Ts/MPa ≥10.5
Cs/%(343 K×24 h,25%) ≤25
Cs/%(296 K×72 h,25%) ≤15
?Eb$E_{\rm{b}}^{-1} $/%(热空气老化343 K×96 h) ≥?15
?H/(°)(热空气老化343 K×96 h) ≤+6
Eb/%(热空气老化343 K×96 h) ≥350
防霉等级 ≥1级
Tab.6 Physical and mechanical properties of EPDM rubber gasket
t/h t/y t/h t/y
0 0 11.2 23.0
2.2 4.6 16.7 34.5
6.7 13.8 22.3 46.0
Tab.7 Aging time conditions of elastic gasket
Fig.7 Waterproof steel mould
Fig.8 Variation of waterproof pressure with opening amount
Fig.9 Comparison of waterproof compression reduction coefficient with aging coefficient
a b R2
?0.136 2.377 0.992
Tab.8 Fitting parameters of waterproof compression reduction coefficient
O/mm ${f_{p_{\rm{w}}}} $ pw
7 0.237 0.40
9 0.312 0.30
10 0.358 0.29
Tab.9 Waterproof compression reduction coefficient at different conditions after 100 years of service
Fig.10 Waterproof compression reduction coefficient curve
[1]   朱祖熹 隧道防水的若干创新技术与值得重新认识的几个问题[J]. 中国建筑防水, 2006, (1): 55- 59
ZHU Zu-xi Several innovative technologies and questions worth reknowing of tunnel waterproof[J]. China Building Waterproof, 2006, (1): 55- 59
doi: 10.3969/j.issn.1007-497X.2006.01.017
[2]   LI X, ZHOU S H, DI H G, et al Evaluation and experimental study on the sealant behaviour of double gaskets for shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2018, 75: 81- 89
doi: 10.1016/j.tust.2018.02.004
[3]   北京市规划委员会. 地铁设计规范: GB 50157-2013[S]. 北京: 中国建筑工业出版社, 2013.
[4]   李咏今 橡胶老化性能变化或寿命预测的计算方法[J]. 合成橡胶工业, 1989, 12 (3): 205- 209
LI Yong-jin Properties change and calculation method of life prediction of aging rubber[J]. China Synthetic Rubber Industry, 1989, 12 (3): 205- 209
[5]   樊庆功, 方卫民, 苏许斌, 等 盾构隧道遇水膨胀橡胶密封垫止水性能试验研究[J]. 地下空间, 2002, 22 (4): 335- 337
FAN Qing-gong, FANG Wei-min, SU Xu-bin, et al Experimental study on water sealing performance of expanded rubber seal gasket in shield tunnel[J]. Underground Space, 2002, 22 (4): 335- 337
doi: 10.3969/j.issn.1673-0836.2002.04.013
[6]   丁文其, 赵伟, 彭益成, 等. 盾构隧道防水密封垫长期防水性能预测方法研究[C] // 水下隧道建设与管理技术交流会论文集. 南京: [s. n.], 2013: 20-25.
DING Wen-qi, ZHAO Wei, PENG Yi-cheng, et al. Research on prediction method of Long term waterproof performance of waterproof gasket for shield tunnel [C]//Construction and Management of Underwater Tunnel. Nanjing: [s. n.], 2013: 20-25.
[7]   高楠. 大断面海底盾构隧道管片接缝防水试验研究[D]. 北京: 北京交通大学, 2016.
GAO Nan. Experimental research on large section subsea tunnel segment joint waterproofing [D]. Beijing: Beijing Jiaotong University, 2016.
[8]   丁杨, 孟伟, 邓文武 盾构管片橡胶密封垫断面形式设计及耐久性研究[J]. 华东交通大学学报, 2016, 33 (4): 45- 49
DING Yang, MENG Wei, DENG Wen-wu Designing of section form and study on durability of rubber gasket of shield tunnel pipe[J]. Journal of East China Jiaotong University, 2016, 33 (4): 45- 49
doi: 10.3969/j.issn.1005-0523.2016.04.007
[9]   刘建国, 陈凯, 刘喜东. 类矩形盾构隧道密封垫耐久性分析[J]. 现代隧道技术, 2016, 53(增1): 158–163.
LIU Jian-guo, CHEN Kai, LIU Xi-dong. Durability analysis of rectangular shield tunnel gasket [J]. Modern Tunnelling Technology, 2016, 53(Suppl.1): 158–163.
[10]   莫一婷, 杨林德, 伍振志, 等 遇水膨胀橡胶的老化性能试验研究及寿命预测[J]. 地下空间与工程学报, 2009, 5 (2): 235- 243
MO Yi-ting, YANG Lin-de, WU Zhen-zhi, et al Experimental research on aging performance and service life forecast of water swelling rubber[J]. Chinese Journal of Underground Space and Engineering, 2009, 5 (2): 235- 243
[11]   BOYCE M C, ARRUDA E M Constitutive models of rubber elasticity: a review[J]. Rubber Chemistry and Technology, 2000, 73 (3): 504- 523
doi: 10.5254/1.3547602
[12]   伍振志. 越江盾构隧道耐久性若干关键问题研究[D]. 上海: 同济大学, 2007.
WU Zhen-zhi. Study on some key problem one the durability of shield tunnel under river [D]. Shanghai: Tongji University, 2007.
[13]   伍振志, 杨林德, 季倩倩, 等 越江盾构隧道防水密封垫应力松弛试验研究[J]. 建筑材料学报, 2009, 12 (5): 539- 543
WU Zhen-zhi, YANG Lin-de, JI Qian-qian, et al Experimental study on stress relaxation of waterproof gasket of river-crossing shield tunnel[J]. Journal of Building Materials, 2009, 12 (5): 539- 543
doi: 10.3969/j.issn.1007-9629.2009.05.008
[14]   戴胜. 越江盾构隧道耐久性分析与评估体系研究[D]. 上海: 同济大学, 2008.
DAI Sheng. Study on the durability analysis and evaluation system for river shield tunnel [D]. Shanghai: Tongji University, 2008.
[15]   SHI C H, CAO C Y, LEI M F, et al Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2015, 50: 490- 498
doi: 10.1016/j.tust.2015.09.004
[16]   刘腾, 袁大军, 张海. 火灾高温下盾构管片接头橡胶防水性能劣化规律试验研究[J]. 土木工程学报, 2015, 48(增1): 244–249.
LIU Teng, YUAN Da-jun, ZHANG Hai. Experimental study of waterproof performance degradation regulation of shield segment joint rubber in environment of high temperature fire[J]. China Civil Engineering Journal, 2015, 48(Suppl.1): 244–249.
[17]   中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528-2009[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2009.
[18]   中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验: GB/T 3512-2014[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2014.
[19]   中国国家标准化管理委员会. 橡胶物理试验方法试样制备和调节通用程序: GB/T 2941-2006[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2006.
[20]   沈佳佳. 地铁盾构隧道管片接头抗渗与耐久性能演化研究[D]. 长沙: 中南大学, 2014.
SHEN Jia-jia. Research on impermeability and durability evolution of segment joint of shield tunnel [D]. Changsha: Central South University, 2014.
[21]   邓超, 丁苏华, 李谷云, 等 防水密封材料耐久性研究[J]. 中国建筑防水材料, 1995, (3): 9- 16
DENG Chao, DING Su-hua, LI Gu-yun, et al Study on durability of waterproofing and sealing materials[J]. China National Waterproof Building Materials, 1995, (3): 9- 16
[22]   张子新, 孙杰, 黄昕, 等 深埋排蓄水隧道接缝密封垫防水性能试验研究[J]. 浙江大学学报: 工学版, 2018, 52 (3): 431- 439
ZHANG Zi-xin, SUN Jie, HUANG Xin, et al Experimental study on waterproof performance of joint seal for deeply-buried storage and drainage tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 431- 439
[23]   杨军, 王进 氯丁橡胶热氧老化的时温依赖性-时温转移叠加原理和寿命预测[J]. 橡胶参考资料, 2005, 6 (35): 31- 35
YANG Jun, WANG Jin Time-temperature dependence of thermal oxygen aging of chloroprene rubber-time-temperature transfer superposition principle and life prediction[J]. Rubber Reference, 2005, 6 (35): 31- 35
[1] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[2] ZHANG Zi-xin, SUN Jie, ZHU Yan-fei, HUANG Xin, YUAN Wei-hao. Experimental study on waterproof performance of joint seal for deeply-buried storage and drainage tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 431-439.
[3] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[4] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[5] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[6] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[7] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[8] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[9] LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, ZHU Ji, CHEN Ren-peng. Supporting pressure for earth pressure balance tunnel face stability
when  tunneling is implemented in saturated sandy soil
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 665-671.
[10] ZHANG Zhen, LI Shan-ping. DVFS-aware CPU service time estimation method[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 725-733.
[11] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2215-2223.
[12] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[13] TENG Tao, XIA Yi-min, YANG Wu-zi, TAN Qing. Characteristics analysis of pressure impact absorption for
shield cutter head drive hydraulic system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 864-868.
[14] GENG Tong, YANG Hua-Yong, GONG Guo-Fang. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 358-363+372.