Please wait a minute...
J4  2010, Vol. 44 Issue (2): 358-363+372    DOI: 10.3785/j.issn.1008-973X.2010.02.027
Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine
XING Tong1,2, YANG Hua-yong1, GONG Guo-fang1
(1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China)
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


Two novel hydraulic drive systems were proposed by analyzing the 6.3 m earth pressure balance (EPB) shield machine and the 1.8 m test shield machine in order to improve the efficiency. The efficiency under the multi-variable pumps joint mode was contrasted with the multi-variable pumps built-up mode, and the variable displacement pump control mode was contrasted with the variable rotate speed pump control mode. The efficiency calculation models of the hydraulic pump and hydraulic motor were conducted, and the simulation models of the four hydraulic systems were conducted by AMESim soft. The efficiency of the multi-variable pumps built-up mode is higher than the multi-variable pumps joint mode about 3%-7% and the efficiency of the variable rotate speed pump control mode is higher than the variable displacement pump control mode about 4%-26% at the typical rotate speed of 1.0-2.0 r/min.

Published: 09 March 2010
CLC:  TH 137  
Cite this article:

GENG Tong, YANG Hua-Yong, GONG Guo-Fang. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine. J4, 2010, 44(2): 358-363+372.

URL:     OR


为了提高盾构刀盘驱动液压系统的效率,以6.3 m土压平衡(EPB)盾构和1.8 m模拟盾构为研究对象,提出两种新型盾构刀盘驱动液压系统.对比分析了常用的多泵联合驱动和新提出的多泵组合驱动方式的刀盘驱动液压系统效率,常用的变排量容积调速和新提出的变转速容积调速驱动方式的刀盘驱动液压系统效率.建立了液压泵和液压马达的效率计算模型,采用AMESim软件建立4种液压驱动系统的仿真模型.研究结果表明,在刀盘典型转速下(1.0~2.0 r/min),多泵组合驱动方式比多泵联合驱动方式的刀盘驱动液压系统效率高3%~7%,变转速容积调速方式比变排量容积调速方式的刀盘驱动液压系统效率高4%~26%.

[1]  江木正夫,箫欣志.日本液压技术动向[J].液压气动与密封, 2004(1): 1114.
江木正夫,XIAO Xin-zhi. The trend of Japan’s hydraulic technology [J]. Hydraulics and Pneumatics and Seal, 2004(1): 1114.[2] 蔡河山.土压平衡盾构液压传动控制系统浅析:刀盘驱动液压传动控制系统[J].液压与气动,2003(8): 3031.
CAI He-shan. Earth-pressure-balance shield hydraulic drive and control system analysis: cut-disk drive hydraulic system [J]. Hydraulics and Pneumatics, 2003(8): 3031.
[3] TAMAKI S. Hydraulic device of shield excavating machine: U.S., 2737560[P]. \
[4] 韩亚丽.土压平衡盾构刀盘驱动液压系统的组成[J].工程机械与维修,2003(4): 9294.
HAN Ya-li. Constitute of the hydraulic system of cutter head in EPB shield machine[J]. Construction Machinery and Maintenance, 2003(4): 9294.
[5] 彭天好,杨华勇,付新.盾构掘进机动力系统的节能研究[J].矿山机械,2000,28(12): 2125.
PENG Tian-hao, YANG Hua-yong, FU Xin. Research into the energy saving of the shield tunneling machine drive system[J]. Mining and Processing Equipment, 2000, 28(12): 2125.
[6] 乐贵平.浅谈北京地铁施工用盾构机选型[J].现代隧道技术,2003(3): 1430.
LE Gui-ping. Selection of shield machines for Beijing metro construction [J]. Modern Tunnelling Technology, 2003(3): 1430.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[7] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[8] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[10] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[11] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[12] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[13] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[14] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[15] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. J4, 2011, 45(11): 1934-1940.