Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 824-832    DOI: 10.3785/j.issn.1008-973X.2020.04.022
Aerospace and Astronautics Technology     
Hierarchical fault detection for nano-pico satellite attitude control system
Yun FEI(),Tao MENG*(),Zhong-he JIN
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1086KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hierarchical fault detection scheme for attitude control system was proposed in order to realize the multi-fault online detection of nano-pico satellite. The system was divided into system layer and component layer. The system layer designed nonlinear observer based on satellite dynamics and kinematics model to realize the global monitoring of attitude control system faults. The component layer used dynamic model to design digital dynamic gyro. The fault location can be realized combined with the residual of Kalman algorithm and wavelet analysis. Multi-component faults can be detected in real time through hierarchical detection. The common on-orbit faults of the attitude control system can be detected. The simulation results show that the scheme can detect simultaneous faults of multiple components, and adapt to fault types such as sudden change, deviation, constant gain, output stuck, etc. The rate of fault detection accuracy reaches 92%, and the false detection rate is less than 2%. Due to the use of hypothesis testing instead of threshold judgment, the fault detection result is more reliable compared with the conventional wavelet detection method. The proposed scheme adapts to more fault types and avoids problems of threshold selection. The scheme saves computing resources, does not need a lot of historical information, and can meet the requirements of online real-time detection.



Key wordsnano-pico satellite      online detection      hierarchical detection      multi-component fault      wavelet transform     
Received: 14 January 2019      Published: 05 April 2020
CLC:  V 448  
Corresponding Authors: Tao MENG     E-mail: fy927@zju.edu.cn;mengtao@zju.edu.cn
Cite this article:

Yun FEI,Tao MENG,Zhong-he JIN. Hierarchical fault detection for nano-pico satellite attitude control system. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 824-832.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/824


皮纳卫星姿控系统分层式故障检测

为了实现皮纳卫星的多故障在线检测,提出针对姿控系统的分层故障检测方案. 该方案将系统划分为系统层和器件层,系统层基于卫星动力学与运动学模型设计非线性观测器,实现姿控分系统故障的全局监测;器件层利用动力学模型设计数字动力学陀螺,结合卡尔曼算法新息以及小波分析,实现故障的定位. 通过分层检测,可以支持多器件故障的实时检测,能够检测常见的在轨姿态控制系统故障. 仿真结果表明,该方案能够实现多器件同时故障的检测,适应突变、偏差、恒增益、输出卡死等故障类型,检测准确率达到92%,误检率低于2%;由于采用假设检验取代阈值判断,相对于常规小波阈值检测方法,故障检测结果的可靠性更高,适应更多的故障类型,避免了阈值的选取问题,且节省计算资源,无需大量的历史信息,能够满足在线实时检测要求.


关键词: 皮纳卫星,  在线检测,  分层检测,  多器件故障,  小波变换 
Fig.1 Frame diagram of attitude control system
Fig.2 Hierarchical detection scheme
敏感器参数 参数值
陀螺(角度随机游走)nA 10?6 (°)/s1/2
陀螺(角速度随机游走)nR 10?8 (°)/s3/2
星敏感器噪声标准差σs [0.02, 0.003, 0.003]°
模拟太阳敏感器噪声标准差σsun 0.5 °
磁强计噪声标准差σm 10?8 T
Tab.1 Sensor model parameters
故障场景 故障器件 故障类型 故障时间/s
场景1 陀螺仪 突变故障 51
场景1 星敏感器 恒偏差故障 51
场景2 模拟太敏 无输出故障 112
场景2 磁强计 恒增益故障 112
场景2 飞轮 停转 112
Tab.2 Specification of failure scenario
Fig.3 System level test result for scenario one
Fig.4 Component layer detection result for scenario one
Fig.5 System level test result for scenario two
Fig.6 Component layer detection result for scenario two
磁强计故障类型 状态 分层检测 小波阈值检测
故障 正常 故障 正常
卡死故障 故障 129 1 9 23
卡死故障 正常 21 149 141 127
偏差故障 故障 132 3 146 18
偏差故障 正常 18 147 4 132
增益故障 故障 144 0 147 31
增益故障 正常 6 150 3 119
Tab.3 Statistical results of two schemes
故障类型 分层检测 常规小波阈值检测
准确率 误检率 漏检率 准确率 误检率 漏检率
卡死 92.7% 0.6% 14% 45% 15% 94%
偏差 93% 2% 12% 93% 12% 3%
增益 98% 0% 4% 89% 21% 2%
Tab.4 Comparison of detection efficiency between two schemes
[1]   闻新, 张兴旺, 秦钰琦, 等 国外航天器在轨故障模式统计与分析[J]. 质量与可靠性, 2014, (6): 13- 18
WEN Xin, ZHANG Xing-wang, QIN Yu-qi, et al Statistics and analysis of on-orbit failure modes of foreign spacecraft[J]. Quality and Reliability, 2014, (6): 13- 18
[2]   谭春林, 胡太彬, 王大鹏, 等 国外航天器在轨故障统计与分析[J]. 航天器工程, 2011, 20 (4): 130- 136
TAN Chun-lin, HU Tai-bin, WANG Da-peng, et al Analysis on foreign spacecraft in-orbit failures[J]. Spacecraft Engineering, 2011, 20 (4): 130- 136
doi: 10.3969/j.issn.1673-8748.2011.04.029
[3]   闻竞竞, 黄道. 故障诊断方法综述[C]// 计算机技术与应用进展. 合肥: 中国科学技术大学出版社, 2007.
WEN Jing-jing, HUANG Dao. Review on fault diagnosis [C]//Advances in Computer Technology and Applications. Hefei: Press of University of Science and Technology of China, 2007.
[4]   谢敏, 楼鑫, 罗芊 航天器故障诊断技术综述及发展趋势[J]. 软件, 2016, 37 (7): 70- 74
XIE Min, LOU Xin, LUO Xian Reviewed and developing trend of spacecraft fault diagnosis technology[J]. Software, 2016, 37 (7): 70- 74
doi: 10.3969/j.issn.1003-6970.2016.07.014
[5]   苏林, 尚朝轩, 刘文静 航天器姿态控制系统故障诊断方法概述[J]. 长春理工大学学报: 自然科学版, 2010, 33 (4): 23- 27
SU Lin, SHANG Chao-xuan, LIU Wen-jing Survey on the technology of fault diagnosis for spacecraft attitude control system[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2010, 33 (4): 23- 27
[6]   PIRMORADI F N, SASSANI F, SILVA C W D Fault detection and diagnosis in a spacecraft attitude determination system[J]. Acta Astronautica, 2009, 65 (5): 710- 729
[7]   LE H X, MATUNAGA S A residual based adaptive unscented Kalman filter for fault recovery in attitude determination system of microsatellites[J]. Acta Astronautica, 2014, 105 (1): 30- 39
doi: 10.1016/j.actaastro.2014.08.020
[8]   TUDOROIU N, SOBHANI-TEHRANI E, KHORASANI K. Interactive bank of unscented Kalman filters for fault detection and isolation in reaction wheel actuators of satellite attitude control system [C]// Conference of the IEEE Industrial Electronics Society. Taipei: IEEE, 2007: 264-269.
[9]   贾庆贤, 张迎春, 陈雪芹, 等 卫星姿态控制系统故障重构观测器设计[J]. 宇航学报, 2016, 37 (4): 442- 450
JIA Qing-xian, ZHANG Ying-chun, CHEN Xue-qin, et al Observer design for fault reconstruction in satellite attitude control system[J]. Journal of Astronautics, 2016, 37 (4): 442- 450
doi: 10.3873/j.issn.1000-1328.2016.04.010
[10]   吴丽娜, 张迎春 离散小波变换在卫星姿态控制系统故障中的应用[J]. 仪器仪表学报, 2006, 27 (6): 407- 409
WU Li-na, ZHANG Ying-chun Application of dispersing wavelet transform to fault diagnosis of the attitude control subsystem of the satellite[J]. Chinese Journal of Scientific Instrument, 2006, 27 (6): 407- 409
[11]   陈婷艳, 荆建平, 陈铁锋 经验模态分解方法在航天器故障诊断中的应用[J]. 噪声与振动控制, 2010, 30 (4): 76- 80
CHEN Ting-yan, JING Jian-ping, CHEN Tie-feng Application of empirical mode decomposition method in spacecraft fault diagnosis[J]. Noise and Vibration Control, 2010, 30 (4): 76- 80
doi: 10.3969/j.issn.1006-1355.2010.04.021
[12]   GUEDDI I, NASRI O, BENOTHMAN K, et al Fault detection and isolation of spacecraft thrusters using an extended principal component analysis to interval data[J]. International Journal of Control Automation and Systems, 2017, 15 (2): 1- 14
[13]   GUEDDI I, NASRI O, BENOTHMAN K, et al. VPCA-based fault diagnosis of spacecraft reaction wheels [C]// 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT). Kyoto: IEEE, 2015.
[14]   樊久铭, 宋政吉 分布式模糊专家系统设计及在卫星诊断中的应用[J]. 哈尔滨工业大学学报, 2005, 37 (5): 611- 613
FAN Jiu-ming, SONG Zheng-ji The design and application of distributed fuzzy expert diagnostic system for satellite[J]. Journal of Harbin Institute of Technology, 2005, 37 (5): 611- 613
doi: 10.3321/j.issn:0367-6234.2005.05.010
[15]   王展. 基于小波与BP神经网络的卫星速率积分陀螺故障诊断与隔离[D]. 武汉: 华中科技大学, 2008.
WANG Zhan. Fault diagnosis and isolation of satellite rate integral gyro based on wavelet and BP neural network [D]. Wuhan: Huazhong University of Science and Technology, 2008.
[16]   苏振华, 陆文高, 齐晶, 等 基于BP神经网络的卫星故障诊断方法[J]. 计算机测量与控制, 2016, 24 (5): 63- 66
SU Zhen-hua, LU Wen-gao, QI Jing, et al A method of satellite fault diagnosis based on BP neural network[J]. Computer Measurement and Control, 2016, 24 (5): 63- 66
[17]   BALDI P, BLANKE M, CASTALDI P, et al Combined geometric and neural network approach to generic fault diagnosis in satellite reaction wheels[J]. IFAC Papers Online, 2015, 48 (21): 194- 199
doi: 10.1016/j.ifacol.2015.09.527
[18]   程瑶. 卫星姿态控制系统的混合故障诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
CHENG Yao. The combined approach for fault diagnosis of satellite attitude control system [D]. Harbin: Harbin Institute of Technology, 2016.
[19]   LIU G, ZHANG K, JIANG B. Adaptive observer-based fast fault estimation of a leader-follower linear multi-agent system with actuator faults [C]// Control Conference. Sabah: IEEE, 2015.
[20]   贺乃宝, 姜长生 基于Lyapunov方法的非线性系统自适应观测器设计[J]. 南京航空航天大学学报, 2006, 38 (3): 267- 270
HE Nai-bao, JIANG Chang-sheng Adaptive observer for nonlinear system based on Lyapunov approach[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38 (3): 267- 270
doi: 10.3969/j.issn.1005-2615.2006.03.001
[21]   FARAGHER R Understanding the basis of the Kalman filter via a simple and intuitive derivation[J]. IEEE Signal Processing Magazine, 2012, 29 (5): 128- 132
doi: 10.1109/MSP.2012.2203621
[22]   张德丰. MATLAB小波分析[M]. 2版. 北京: 机械工业出版社, 2012: 384.
[23]   孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005: 219.
[24]   URSZULA L, ZYGMUNT H. Wavelet based rule for fault detection [C]// 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes Safe Process. Warsaw: IFAC, 2018.
[25]   HAJIYEV C, CILDEN D, SOMOV Y Gyro-free attitude and rate estimation for a small satellite using SVD and EKF[J]. Aerospace Science and Technology, 2016, 55 (8): 324- 331
[26]   HAJIYEV C, CILDEN G D Review on gyroless attitude determination methods for small satellites[J]. Progress in Aerospace Sciences, 2017, 90 (4): 54- 66
[1] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1804-1810.
[2] CHEN Xue-jun, YANG Yong-ming. De-noising for vibration signals of wind power generator using empirical wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 988-995.
[3] XIANG Yi-qiang, JIA Ya-kun. Damage detection of hangers in arch bridges based on relative variation of wavelet total energy[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 870-878.
[4] YE Xiao-wei, DING Peng, ZHOU Cheng, LI Yong-jun,NI Yi-qing, DONG Xiao-peng. Monitoring of metro-tunnel freezing construction using fiber sensing technology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1072-1080.
[5] KONG Fan-li,LI Ji,ZOU Le-jun,SHEN Xiao-hua,WU Wen-yuan,SU Nan. Haar wavelet transformation-based gradually
 abandoned channel facies identification
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 568-576.
[6] YANG Jiang-xin,CHENG Shi,CAO Yan-long,ZHENG Hua-wen,HE Yuan-feng,XIE Yong-cheng. Location estimation method for loose part based on AR model and wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1366-1369.
[7] SHE Jing-Shan, MENG Meng, LUO Zhi-Ceng, MA Yu-Liang. Electromyography movement recognition of lower limb based on multiple kernel learning[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1292-1297.
[8] HU Zhi-Kun, WANG Mei-Ling, GUI Wei-Hua, YANG Chun-Hua, DING Jia-Feng. Support vector machine based classification method for
timeseries periodic waveform
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1327-1332.
[9] TUN Hua-Cheng, WANG Fu, PU Shi-Liang, PU Xin-Guo, YUAN Tian-Fu, CHEN Ling-Gong, CEN Ge-Fa. Particle identification and location measurement in digital
inline holography
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 765-770.
[10] ZHENG Wei-yan, WU Wei-lin, WU Jian-qiang, WANG Qing-gang. A power quality event data compression algorithm
 base on support vector regression
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2118-2123.
[11] YANG Ke-Ji, FANG Wen-Beng, HUANG Yi-Chun, DENG. A wide adaptability deconvolution technique for ultrasonic nondestructive testing[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1766-1771.
[12] XIE Xu, TUN Dong-Yan, WANG Jian-Feng, et al. Dynamical behavior of steel box girder bridges due to vehicle-induced vibration at expansion joint[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1923-1930.