Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (2): 340-352    DOI: 10.3785/j.issn.1008-973X.2023.02.014
    
Longitudinal stress and deformation characteristics of shield tunnel crossing active fault
Han-yuan LI1,2(),Xing-gao LI1,2,*(),Yang LIU3,Yi YANG1,2,Ming-zhe MA1,2
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
3. School of Civil Engineering, Zhengzhou College of Finance and Economics, Zhengzhou 450000, China
Download: HTML     PDF(3339KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the mechanical response characteristics of shield tunnels under fault dislocation, an analytical model of the longitudinal mechanical response of shield tunnels under cross-active fault conditions was proposed by introducing the Vlasov two-parameter foundation model and considering the influence of horizontal friction. Taking the normal fault dislocation condition as a case study, the rationality of the analytical model was verified by model test and numerical simulation, and the main factors affecting the longitudinal mechanical response of the structure were further discussed. A three-dimensional numerical model considering the plastic deformation of the annular joints was established to analyze the influence of plastic deformation of the annular joint on the longitudinal force and deformation of the tunnel structure. Results show that the longitudinal mechanical response characteristics of the tunnel calculated by the analytical model are consistent with those obtained by the model test and numerical calculation. When the vertical shear stiffness of the foundation is not considered, the longitudinal bending moment of the tunnel calculated is too large. Compared with the shallow tunnel in soil conditions, the deep-buried tunnel in rock stratum has a more obvious restriction on tunnel deformation and leads to the excessive longitudinal internal force of the structure. The vertical distance between the tunnel and the fault, the width of the fault fracture zone, and the effective rate of the longitudinal bending stiffness of the structure all significantly influence the maximum longitudinal internal force of the tunnel. When considering the plastic deformation of the annular joint, the obvious plastic deformation of the shield tunnel annular joint has occurred under 20 cm fault dislocation, which severely affects the operation safety of the shield tunnel.



Key wordsfault dislocation      shield tunnel      theoretic analysis      stress characteristics      longitudinal deformation     
Received: 21 February 2022      Published: 28 February 2023
CLC:  U 459.3  
Fund:  中央高校基本科研业务费专项资金资助项目(2021YJS129);国家重点基础研究发展规划(973计划)资助项目(2015CB057800)
Corresponding Authors: Xing-gao LI     E-mail: 20115020@bjtu.edu.cn;lixg@bjtu.edu.cn
Cite this article:

Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.02.014     OR     https://www.zjujournals.com/eng/Y2023/V57/I2/340


跨活动断层盾构隧道纵向受力及变形特征

为了研究断层错动下盾构隧道力学响应特征,引入Vlasov双参数地基模型,并考虑水平地基摩阻力的影响,提出跨活动断层盾构隧道纵向力学响应解析模型. 以正断层错动工况为例,采用模型试验及数值模拟验证解析模型的合理性,讨论影响隧道结构纵向力学响应的因素. 建立考虑环缝接头塑性变形的三维数值模型,分析环缝接头塑性变形对隧道结构纵向受力与变形的影响. 研究结果表明:解析模型计算得到的隧道纵向力学响应特征与模型试验、数值计算所得规律一致,当不考虑竖向地基剪切刚度时,解析解计算得到的隧道纵向弯矩偏大;相较浅埋土质地层工况,深埋岩质地层对隧道纵向变形限制作用更加明显,导致结构纵向内力增大;隧道与断层之间竖向距离、断层破碎带宽度及结构纵向抗弯刚度有效率等因素均对隧道最大纵向内力影响显著;当考虑环缝接头塑性变形时,在断层错动20 cm工况下,盾构隧道环缝接头已经产生显著的塑性变形,严重威胁盾构隧道的运营安全.


关键词: 断层错动,  盾构隧道,  理论解析,  受力特征,  纵向变形 
Fig.1 Longitudinal force model of cross-fault shield tunnel
Fig.2 Analytical solution model of cross-fault shield tunnel
Fig.3 Stress analysis of beam microelement
Fig.4 Similar model test of cross-fault shield tunnel[17]
Fig.5 Monitoring sensor layout instruction
Fig.6 Numerical calculation model of cross-fault shield tunnel
Fig.7 Longitudinal internal force of tunnel in shallow buried soil
Fig.8 Structural deformation of shallow buried soil stratum
Fig.9 Longitudinal internal force of tunnel in deeply buried rock stratum
Fig.10 Relationship between surrounding rock condition of fracture zone and rotation angle of tunnel structure
Fig.11 Longitudinal bending moment of tunnel under different distances from tunnel bottom to fault
Fig.12 Curves of maximum bending moment of tunnel with vertical distance from tunnel bottom to fault
Fig.13 Longitudinal bending moment of tunnel under different fault widths
Fig.14 Curves of longitudinal maximum bending moment of tunnel versus fault width
Fig.15 Curves of longitudinal maximum bending moment of tunnel versus longitudinal effective rigidity ratio
Fig.16 Relationship between longitudinal maximum bending moment of tunnel and elastic ultimate bending moment
Fig.17 Three-dimensional numerical model of shield tunnel
Fig.18 Determination method of annular joint stiffness
Fig.19 Curves of bending moment versus deflection angle of shield tunnel
Fig.20 Boundary condition and loading method of numerical model
Fig.21 Relationship between longitudinal maximum bending moment of tunnel and fault dislocation
Fig.22 Opening of annular joints of shield tunnel
Fig.23 Relationship between opening of annular segment joints and fault dislocation
[19]   张文杰, 徐旭, 李向红, 等 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学报, 2009, 28 (Suppl.2): 3938- 3944
ZHANG Wen-jie, XU Xu, LI Xiang-hong, et al Research on generalized longitudinal equivalent continuous model of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.2): 3938- 3944
doi: 10.3321/j.issn:1000-6915.2009.z2.094
[20]   田敬学, 张庆贺 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001, (3): 35- 37
TIAN Jing-xue, ZHANG Qing-he Calculation of longitudinal rigidity of shield tunnels[J]. China Municipal Engineering, 2001, (3): 35- 37
doi: 10.3969/j.issn.1004-4655.2001.03.012
[21]   CHEN R P, CHEN S, WU H N, et al Investigation on deformation behavior and failure mechanism of a segmental ring in shield tunnels based on elaborate numerical simulation[J]. Engineering Failure Analysis, 2020, 117: 104960
doi: 10.1016/j.engfailanal.2020.104960
[22]   梁荣柱, 宗梦繁, 康成, 等 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报: 工学版, 2018, 52 (3): 420- 430
[1]   LIU X Z, LI X F, SANG Y L, et al Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 417- 425
doi: 10.1016/j.tust.2015.05.010
[2]   孙飞, 张志强, 易志伟 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 47 (8): 3037- 3044
SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics, 2019, 47 (8): 3037- 3044
[3]   安韶, 陶连金, 边金, 等 逆断层错动作用下地铁隧道结构损伤分析[J]. 湖南大学学报: 自然科学版, 2020, 47 (7): 147- 156
AN Shao, TAO Lian-jin, BIAN Jin, et al Damage analysis on subway tunnel structure under effect of reverse fault dislocation[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (7): 147- 156
[4]   郭翔宇, 耿萍, 丁梯, 等 逆断层黏滑作用下隧道力学行为研究[J]. 振动与冲击, 2021, 40 (17): 249- 258
[22]   LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, et al Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 420- 430
[4]   GUO Xiang-yu, GENG Ping, DING Ti, et al Mechanical behavior of tunnel under stick-slip action of reverse fault[J]. Journal of Vibration and Shock, 2021, 40 (17): 249- 258
[5]   KIANI M, AKHLAGHI T, GHALANDARZADEH A Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108- 119
doi: 10.1016/j.tust.2015.10.005
[6]   胡志平, 彭建兵, 王启耀, 等 盾构隧道60°斜穿地裂缝的变形破坏机制试验研究[J]. 岩石力学与工程学报, 2010, 29 (1): 176- 183
HU Zhi-ping, PENG Jian-bing, WANG Qi-yao, et al Modeling test research on failure mechanism of shieldtunnel crossing ground fissure with 60°[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (1): 176- 183
[7]   ZAHERI M, RANJBARNIA A, DIAS D, et al Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23: 100333
doi: 10.1016/j.trgeo.2020.100333
[8]   王滨, 李昕, 周晶 走滑断层作用下埋地钢质管道反应的改进解析方法[J]. 工程力学, 2011, 28 (12): 51- 58
WANG Bin, LI Xin, ZHOU Jing An improved analytical method of buried steel pipeline response under strike-slip fault movement[J]. Engineering Mechanics, 2011, 28 (12): 51- 58
[9]   刘国钊, 乔亚飞, 何满朝, 等 活动性断裂带错动下的隧道纵向响应解析解[J]. 岩土力学, 2020, 41 (3): 923- 932
LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, et al An analytical solution of longitudinal response of tunnels under the dislocation of active fault[J]. Rock and Soil Mechanics, 2020, 41 (3): 923- 932
[10]   耿萍, 陈枰良, 陈昌健, 等 考虑接触非线性的盾构隧道纵向分析模型及其应用[J]. 同济大学学报: 自然科学版, 2021, 49 (6): 759- 769
GENG Ping, CHEN Ping-liang, CHEN Chang-jian, et al Longitudinal analysis model of shield tunnel considering contact nonlinearity and its application[J]. Journal of Tongji University: Natural Science, 2021, 49 (6): 759- 769
[11]   梁荣柱, 宗梦繁, 康成, 等 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报:工学版, 2018, 52 (3): 420- 430
LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, et al Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 420- 430
[12]   VLASOVV Z, LEONTEVU N. Beams, plates and shells on elastic foundations [M]// Israel program for scientific translations. Jerusalem: [s.n.], 1966: 229−236.
[13]   British Standards Institution. Code of practice for temporary works procedures and the permissible stress design of false work: BS5975-2008[S]. London: British Standards Institution, 2008.
[14]   黄栩, 黄宏伟, 张冬梅 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34 (7): 1241- 1249
HUANG Xu, HUANG Hong-wei, ZHANG Dong-mei Longitudinal deflection of existing shield tunnels due to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (7): 1241- 1249
[15]   SHIBA Y, KAWASHIMA K, OBINATA N, et al An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988, 398: 319- 327
[16]   WU H N, SHEN S L, LIAO S M, et al Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317- 323
doi: 10.1016/j.tust.2015.08.001
[17]   李瀚源, 李兴高, 马明哲, 等 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 631- 639
LI Han-yuan, LI Xing-gao, MA Ming-zhe, et al Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 631- 639
[18]   张景, 何川, 耿萍, 等 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36 (1): 68- 77
ZHANG Jing, HE Chuan, GENG Ping, et al Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (1): 68- 77
[1] Han-yuan LI,Xing-gao LI,Ming-zhe MA,Hao LIU,Yi YANG. Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 631-639.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[4] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[5] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[6] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[7] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[8] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[9] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[10] LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, ZHU Ji, CHEN Ren-peng. Supporting pressure for earth pressure balance tunnel face stability
when tunneling is implemented in saturated sandy soil
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 665-671.
[11] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2215-2223.
[12] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[13] TENG Tao, XIA Yi-min, YANG Wu-zi, TAN Qing. Characteristics analysis of pressure impact absorption for
shield cutter head drive hydraulic system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 864-868.
[14] GENG Tong, YANG Hua-Yong, GONG Guo-Fang. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 358-363+372.