Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 892-899    DOI: 10.3785/j.issn.1008-973X.2023.05.005
    
Hierarchical federated learning based on wireless D2D networks
Chong-he LIU(),Guan-ding YU*(),Sheng-li LIU
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1301KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hierarchical federated learning framework based on wireless device-to-device (D2D) networks was proposed to solve the problem of large communication resource consumption and limited device computing resources faced by deploying federated learning in wireless networks. Different from the traditional architectures, the hierarchical aggregation was adopted for model training. The architecture performed the intra-cluster aggregation through D2D networks, and each cluster performed the decentralized training at the same time. A cluster head was selected from each cluster to upload the model to the server for global aggregation. The network traffic of the central node was reduced by combining the hierarchical federated learning and decentralized learning. The degree of the vertices in the D2D networks was used to measure the model convergence performance. The head selection and bandwidth allocation were jointly optimized by maximizing the total degree of selected cluster heads. An optimization algorithm based on dynamic programming was designed to obtain the optimal solutions. The simulation results show that compared with the baseline algorithm,the framework can not only effectively reduce the frequency of global aggregation and training time, but also improve the performance of the final model.



Key wordsfederated learning      device-to-device communication      decentralized learning      resource allocation      training acceleration     
Received: 22 July 2022      Published: 09 May 2023
CLC:  TN 929  
Fund:  国家自然科学基金资助项目(61671407)
Corresponding Authors: Guan-ding YU     E-mail: liuchonghe@zju.edu.cn;yuguanding@zju.edu.cn
Cite this article:

Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.005     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/892


基于无线D2D网络的分层联邦学习

为了解决在无线网络中部署联邦学习面临的通信资源消耗大和设备计算资源有限的问题,提出一种基于无线设备直通(D2D)网络的分层联邦学习框架. 与传统架构不同,模型训练采用分层聚合. 该框架通过D2D网络进行簇内聚合,各个簇同时进行去中心化训练,从每个簇中选择一个簇头上传模型至服务器进行全局聚合. 通过将去中心化学习与分层联邦学习结合,降低了中央节点网络流量. 使用D2D网络中节点的度来衡量模型收敛性能,通过最大化所有簇头的度之和,对簇头选择与带宽分配问题进行联合优化,并且设计一种基于动态规划的算法求出最优解. 仿真结果表明,与基线算法相比,该框架不仅能够有效地降低全局聚合的频率和减少训练时间,而且能够提高最终训练得到的模型性能.


关键词: 联邦学习,  设备直通网络,  去中心化学习,  资源分配,  训练加速 
Fig.1 System model of hierarchical federated learning system based on wireless D2D networks
Fig.2 Sequence model of hierarchical federated learning
Fig.3 Local experience loss versus degree for training CNN on Cifar-10
Fig.4 Local experience loss versus degree for training DNN on MNIST
Fig.5 Accuracy of CNN on Cifar-10 varies with time in different algorithms
Fig.6 Accuracy of DNN on MNIST varies with time in different algorithms
Fig.7 Accuracy of CNN on Cifar-10 varies with time in different cluster head selection methods
Fig.8 Accuracy of DNN on MNIST varies with time in different cluster head selection methods
Fig.9 Accuracy of CNN on Cifar-10 varies with time in different global aggregation frequencies
Fig.10 Accuracy of DNN on MNIST varies with time in different global aggregation frequencies
[1]   CHEN M, YANG Z, SAAD W, et al A Joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 20 (1): 269- 283
[2]   ZHU G, LIU D, DU Y, et al Towards an intelligent edge: wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58 (1): 19- 25
doi: 10.1109/MCOM.001.1900103
[3]   CHEN M, GUNDUZ D, HUANG K, et al Distributed learning in wireless networks: recent progress and future challenges[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (12): 3579- 3605
doi: 10.1109/JSAC.2021.3118346
[4]   MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Artificial Intelligence and Statistics. Lauderdale: PMLR, 2017: 1273-1282.
[5]   LIM W Y B, LUONG N C, HOANG D T, et al Federated learning in mobile edge networks: a comprehensive survey[J]. IEEE Communications Surveys and Tutorials, 2020, 22 (3): 2031- 2063
doi: 10.1109/COMST.2020.2986024
[6]   LIM W Y B, NG J S, XIONG Z, et al Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33 (3): 536- 550
[7]   WANG Z, XU H, LIU J, et al. Accelerating federated learning with cluster construction and hierarchical aggregation [EB/OL]. [2022-02-01]. https://www.computer.org/csdl/journal/tm/5555/01/09699080/1ADJeS80Gvm.
[8]   FENG D, LU L, YUANWU Y, et al Device-to-device communications in cellular networks[J]. IEEE Communications Magazine, 2014, 52 (4): 49- 55
doi: 10.1109/MCOM.2014.6807946
[9]   ASADI A, WANG Q, MANCUSO V A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16 (4): 1801- 1819
doi: 10.1109/COMST.2014.2319555
[10]   YU D, ZOU Z, CHEN S, et al Decentralized parallel sgd with privacy preservation in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (6): 5211- 5220
doi: 10.1109/TVT.2021.3064877
[11]   XING H, SIMEONE O, BI S. Decentralized federated learning via SGD over wireless D2D networks [C]// 21st International Workshop on Signal Processing Advances in Wireless Communications. Atlanta: IEEE, 2020: 1-5.
[12]   POKHREL S R, CHOI J. A decentralized federated learning approach for connected autonomous vehicles [C]// IEEE Wireless Communications and Networking Conference Workshops. Seoul : IEEE, 2020: 1-6.
[13]   ZHU L, LIU C, YUAN J, et al. Machine learning-based resource optimization for D2D communication underlaying networks [C]// IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria: IEEE, 2020: 1-6.
[14]   HOANG T D, LE L B, LENGOC T Resource allocation for D2D communication underlaid cellular networks using graph-based approach[J]. IEEE Transactions on Wireless Communications, 2016, 15 (10): 7099- 7113
doi: 10.1109/TWC.2016.2597283
[15]   OZFATURA E, RINI S, GÜNDÜZ D. Decentralized SGD with over-the-air computation [C]// IEEE Global Communications Conference. Taipei: IEEE, 2020: 1-6.
[16]   NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge [C]// IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-7.
[17]   WEN D, BENNIS M, HUANG K Joint parameter-and-bandwidth allocation for improving the efficiency of partitioned edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19 (12): 8272- 8286
doi: 10.1109/TWC.2020.3021177
[18]   JIANG Z, YU G, CAI Y, Decentralized edge learning via unreliable device-to-device communications [J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9041-9055
[19]   WEN D, JEON K J, BENNIS M, et al Adaptive subcarrier, parameter, and power allocation for partitioned edge learning over broadband channels[J]. IEEE Transactions on Wireless Communications, 2021, 20 (12): 8348- 8361
doi: 10.1109/TWC.2021.3092075
[20]   ZENG Q, DU Y, HUANG K, et al Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing[J]. IEEE Transactions on Wireless Communications, 2021, 20 (12): 7947- 7962
doi: 10.1109/TWC.2021.3088910
[21]   KOLOSKOVA A, LOIZOU N, BOREIRI S, et al. A unified theory of decentralized sgd with changing topology and local updates [C]// International Conference on Machine Learning. Vienna: PMLR, 2020: 5381-5393.
[1] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[2] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[3] Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.
[4] BAI Ru-fan, LEI Jian-kun, ZHANG Liang. Towards resource allocation optimization for big data test field application[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1225-1232.
[5] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.