Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1782-1787    DOI: 10.3785/j.issn.1008-973X.2021.09.020
    
Performance-aware resource allocation algorithm for core network control plane
Jun-jie CHEN1,2(),Hong-jun LI1,Zhang-hua CAO1
1. School of Information Science and Technology, Nantong University, Nantong 226019, China
2. Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China
Download: HTML     PDF(832KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A performance-aware resource allocation algorithm was proposed aiming at the resource allocation problem of the core network control plane in network function virtualization (NFV) environment. Based on the queuing network theory, a performance evaluation model for the control plane was established, and an approximate expression for the average response time of the signaling procedures was derived. Further, considering both the processing performance and the deployment cost of virtual network function (VNF) instances, a multi-objective optimization model was developed for resource allocation of the control plane, and an improved multi-objective genetic algorithm was proposed. Simulation results showed that the error of the performance evaluation model was within 10% and the model was better than the Jackson network model. Compared with NSGA-II and HaD-MOEA, the approximate Pareto front obtained by the proposed algorithm was better in terms of convergence and diversity, and was closer to the real Pareto front.



Key wordscore network      resource allocation      queueing network      multi-objective optimization      crowding distance     
Received: 09 September 2020      Published: 20 October 2021
CLC:  TP 915  
Fund:  南通市科技计划资助项目(JC2018025)
Cite this article:

Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.020     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1782


性能感知的核心网控制面资源分配算法

针对网络功能虚拟化(NFV)环境下核心网控制面资源分配问题,提出性能感知的资源分配算法. 基于排队网络理论建立核心网控制面性能评估模型,推导出信令流程平均响应时间的近似表达式. 为了确定核心网控制面虚拟网络功能(VNF)实例的最优配置数量,综合考虑处理性能和VNF实例部署成本,建立核心网控制面资源分配多目标优化模型,并提出改进的多目标遗传算法. 仿真结果表明,该性能评估模型误差在10%以内,优于Jackson排队网络模型;与NSGA-II和HaD-MOEA相比,所提算法获得的近似Pareto前沿收敛性和多样性更好,更逼近真实Pareto前沿.


关键词: 核心网,  资源分配,  排队网络,  多目标优化,  拥挤距离 
Fig.1 Computation of harmonic mean distance
Fig.2 Comparison of average response time of three performance analysis methods
Fig.3 IGD results of Pareto front with evolution generation
算法 IGD HVR
本文算法 0.009 1 0.847 1
NSGA-II 0.021 2 0.784 6
HaD-MOEA 0.012 6 0.829 5
Tab.1 IGD and HVR results of three algorithms (t=30)
Fig.4 Pareto front obtained by improved multi-objective genetic algorithm
Fig.5 Processing performance and deployment cost of core network control plane under different resource allocation algorithms
[1]   王进文, 张晓丽, 李琦, 等 网络功能虚拟化技术研究进展[J]. 计算机学报, 2019, 42 (2): 185- 206
WANG Jin-wen, ZHANG Xiao-li, LI Qi, et al Network function virtualization technology: a survey[J]. Chinese Journal of Computers, 2019, 42 (2): 185- 206
[2]   NGUYEN V G, BRUNSTROM A, GRINNEMO K J, et al SDN/NFV-based mobile packet core network architectures: a survey[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (3): 1567- 1602
doi: 10.1109/COMST.2017.2690823
[3]   TALEB T, CORICI M, PARADA C, et al EASE: EPC as a service to ease mobile core network deployment over cloud[J]. IEEE Network, 2015, 29 (2): 78- 88
doi: 10.1109/MNET.2015.7064907
[4]   ABE S, HASEGAWA G, MURATA M Effects of C/U plane separation and bearer aggregation in mobile core network[J]. IEEE Transactions on Network and Service Management, 2018, 15 (2): 611- 624
doi: 10.1109/TNSM.2018.2797301
[5]   PARVEZ I, RAHMATI A, GUVENC I, et al A survey on low latency towards 5G: RAN, core network and caching solutions[J]. IEEE Communications Surveys and Tutorials, 2018, 20 (4): 3098- 3130
doi: 10.1109/COMST.2018.2841349
[6]   HAWILO H, JAMMAL M, SHAMI A Network function virtualization-aware orchestrator for service function chaining placement in the cloud[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (3): 643- 655
doi: 10.1109/JSAC.2019.2895226
[7]   王琛, 汤红波, 游伟, 等 一种5G网络低时延资源调度算法[J]. 西安交通大学学报, 2018, 52 (4): 117- 124
WANG Chen, TANG Hong-bo, YOU Wei, et al A resource scheduling algorithm with low latency for 5G networks based on effective hybrid genetic algorithm and tabu search[J]. Journal of Xi'an Jiaotong University, 2018, 52 (4): 117- 124
[8]   ALAWE I, KSENTINI A, HADJADJ-AOUL Y, et al Improving traffic forecasting for 5G core network scalability: a machine learning approach[J]. IEEE Network, 2018, 32 (6): 42- 49
doi: 10.1109/MNET.2018.1800104
[9]   ARTEAGA C H T, ANACONA F B, ORTEGA K T T, et al A scaling mechanism for an evolved packet core based on network functions virtualization[J]. IEEE Transactions on Network and Service Management, 2020, 17 (2): 779- 792
doi: 10.1109/TNSM.2019.2961988
[10]   PRADOS-GARZON J, RAMOS-MUNOZ J J, AMEIGEIRAS P, et al Modeling and dimensioning of a virtualized MME for 5G mobile networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (5): 4383- 4395
doi: 10.1109/TVT.2016.2608942
[11]   PRADOS-GARZON J, LAGHRISSI A, BAGAA M, et al A complete LTE mathematical framework for the network slice planning of the EPC[J]. IEEE Transactions on Mobile Computing, 2020, 19 (1): 1- 14
[12]   BAGAA M, TALEB T, LAGHRISSI A, et al Coalitional game for the creation of efficient virtual core network slices in 5G mobile systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36 (3): 469- 484
doi: 10.1109/JSAC.2018.2815398
[13]   陈卓, 冯钢, 刘怡静, 等 MEC中基于改进遗传模拟退火算法的虚拟网络功能部署策略[J]. 通信学报, 2020, 41 (4): 70- 80
CHEN Zhuo, FENG Gang, LIU Yi-jing, et al Virtual network function deployment strategy based on improved genetic simulated annealing algorithm in MEC[J]. Journal on Communications, 2020, 41 (4): 70- 80
doi: 10.11959/j.issn.1000-436x.2020074
[14]   WHITT W The queueing network analyzer[J]. Bell System Technical Journal, 1983, 62 (9): 2779- 2815
doi: 10.1002/j.1538-7305.1983.tb03204.x
[15]   DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
[16]   WANG Z, TANG K, YAO X Multi-objective approaches to optimal testing resource allocation in modular software systems[J]. IEEE Transactions on Reliability, 2010, 59 (3): 563- 575
doi: 10.1109/TR.2010.2057310
[17]   毕晓君, 王朝 一种基于参考点约束支配的NSGA-Ⅲ算法[J]. 控制与决策, 2019, 34 (2): 369- 376
BI Xiao-jun, WANG Chao A reference point constrained dominance-based NSGA-Ⅲ algorithm[J]. Control and Decision, 2019, 34 (2): 369- 376
[18]   DEB K, AGRAWAL S. A niched-penalty approach for constraint handling in genetic algorithms[C]// Artificial Neural Nets and Genetic Algorithms. Vienna: Springer, 1999: 235-243.
[19]   赵舵, 唐启超, 余志斌 一种采用改进交叉熵的多目标优化问题求解方法[J]. 西安交通大学学报, 2019, 53 (3): 66- 74
ZHAO Duo, TANG Qi-chao, YU Zhi-bin A solution to multi-objective optimization problem with improved cross entropy optimization[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 66- 74
[20]   丁进良, 杨翠娥, 陈立鹏, 等 基于参考点预测的动态多目标优化算法[J]. 自动化学报, 2017, 43 (2): 313- 320
DING Jin-liang, YANG Cui-e, CHEN Li-peng, et al Dynamic multi-objective optimization algorithm based on reference point prediction[J]. Acta Automatica Sinica, 2017, 43 (2): 313- 320
[1] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[2] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[3] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[4] Hai-xiu CHENG,Guan-lin LI,Ling ZHANG. Dynamic resource reservation algorithm for core network video business with bandwidth reduction based on time slot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1746-1752.
[5] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[6] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[7] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[8] Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.
[9] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[10] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.
[11] ZHANG De-sheng, LIU An, CHEN Jian, ZHAO Rui-jie, SHI Wei-dong. Multi-objective optimization of horizontal axis tidal current turbine using particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2349-2355.
[12] YU Yang, XIA Chun-he, HU Xiao-yun. Defense scheme generation method using mixed path attack graph[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1745-1759.
[13] ZHANG Jun-hong, ZHANG Yu-sheng, WANG Jian, XU Zhe-xuan,HU Huan, ZHAO Yong-huan. Multi-objective optimization design for exhaust manifold considering thermo-mechanical coupling[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1153-1162.
[14] BAI Ru-fan, LEI Jian-kun, ZHANG Liang. Towards resource allocation optimization for big data test field application[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1225-1232.
[15] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.