|
|
Performance-aware resource allocation algorithm for core network control plane |
Jun-jie CHEN1,2( ),Hong-jun LI1,Zhang-hua CAO1 |
1. School of Information Science and Technology, Nantong University, Nantong 226019, China 2. Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China |
|
|
Abstract A performance-aware resource allocation algorithm was proposed aiming at the resource allocation problem of the core network control plane in network function virtualization (NFV) environment. Based on the queuing network theory, a performance evaluation model for the control plane was established, and an approximate expression for the average response time of the signaling procedures was derived. Further, considering both the processing performance and the deployment cost of virtual network function (VNF) instances, a multi-objective optimization model was developed for resource allocation of the control plane, and an improved multi-objective genetic algorithm was proposed. Simulation results showed that the error of the performance evaluation model was within 10% and the model was better than the Jackson network model. Compared with NSGA-II and HaD-MOEA, the approximate Pareto front obtained by the proposed algorithm was better in terms of convergence and diversity, and was closer to the real Pareto front.
|
Received: 09 September 2020
Published: 20 October 2021
|
|
Fund: 南通市科技计划资助项目(JC2018025) |
性能感知的核心网控制面资源分配算法
针对网络功能虚拟化(NFV)环境下核心网控制面资源分配问题,提出性能感知的资源分配算法. 基于排队网络理论建立核心网控制面性能评估模型,推导出信令流程平均响应时间的近似表达式. 为了确定核心网控制面虚拟网络功能(VNF)实例的最优配置数量,综合考虑处理性能和VNF实例部署成本,建立核心网控制面资源分配多目标优化模型,并提出改进的多目标遗传算法. 仿真结果表明,该性能评估模型误差在10%以内,优于Jackson排队网络模型;与NSGA-II和HaD-MOEA相比,所提算法获得的近似Pareto前沿收敛性和多样性更好,更逼近真实Pareto前沿.
关键词:
核心网,
资源分配,
排队网络,
多目标优化,
拥挤距离
|
|
[1] |
王进文, 张晓丽, 李琦, 等 网络功能虚拟化技术研究进展[J]. 计算机学报, 2019, 42 (2): 185- 206 WANG Jin-wen, ZHANG Xiao-li, LI Qi, et al Network function virtualization technology: a survey[J]. Chinese Journal of Computers, 2019, 42 (2): 185- 206
|
|
|
[2] |
NGUYEN V G, BRUNSTROM A, GRINNEMO K J, et al SDN/NFV-based mobile packet core network architectures: a survey[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (3): 1567- 1602
doi: 10.1109/COMST.2017.2690823
|
|
|
[3] |
TALEB T, CORICI M, PARADA C, et al EASE: EPC as a service to ease mobile core network deployment over cloud[J]. IEEE Network, 2015, 29 (2): 78- 88
doi: 10.1109/MNET.2015.7064907
|
|
|
[4] |
ABE S, HASEGAWA G, MURATA M Effects of C/U plane separation and bearer aggregation in mobile core network[J]. IEEE Transactions on Network and Service Management, 2018, 15 (2): 611- 624
doi: 10.1109/TNSM.2018.2797301
|
|
|
[5] |
PARVEZ I, RAHMATI A, GUVENC I, et al A survey on low latency towards 5G: RAN, core network and caching solutions[J]. IEEE Communications Surveys and Tutorials, 2018, 20 (4): 3098- 3130
doi: 10.1109/COMST.2018.2841349
|
|
|
[6] |
HAWILO H, JAMMAL M, SHAMI A Network function virtualization-aware orchestrator for service function chaining placement in the cloud[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (3): 643- 655
doi: 10.1109/JSAC.2019.2895226
|
|
|
[7] |
王琛, 汤红波, 游伟, 等 一种5G网络低时延资源调度算法[J]. 西安交通大学学报, 2018, 52 (4): 117- 124 WANG Chen, TANG Hong-bo, YOU Wei, et al A resource scheduling algorithm with low latency for 5G networks based on effective hybrid genetic algorithm and tabu search[J]. Journal of Xi'an Jiaotong University, 2018, 52 (4): 117- 124
|
|
|
[8] |
ALAWE I, KSENTINI A, HADJADJ-AOUL Y, et al Improving traffic forecasting for 5G core network scalability: a machine learning approach[J]. IEEE Network, 2018, 32 (6): 42- 49
doi: 10.1109/MNET.2018.1800104
|
|
|
[9] |
ARTEAGA C H T, ANACONA F B, ORTEGA K T T, et al A scaling mechanism for an evolved packet core based on network functions virtualization[J]. IEEE Transactions on Network and Service Management, 2020, 17 (2): 779- 792
doi: 10.1109/TNSM.2019.2961988
|
|
|
[10] |
PRADOS-GARZON J, RAMOS-MUNOZ J J, AMEIGEIRAS P, et al Modeling and dimensioning of a virtualized MME for 5G mobile networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (5): 4383- 4395
doi: 10.1109/TVT.2016.2608942
|
|
|
[11] |
PRADOS-GARZON J, LAGHRISSI A, BAGAA M, et al A complete LTE mathematical framework for the network slice planning of the EPC[J]. IEEE Transactions on Mobile Computing, 2020, 19 (1): 1- 14
|
|
|
[12] |
BAGAA M, TALEB T, LAGHRISSI A, et al Coalitional game for the creation of efficient virtual core network slices in 5G mobile systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36 (3): 469- 484
doi: 10.1109/JSAC.2018.2815398
|
|
|
[13] |
陈卓, 冯钢, 刘怡静, 等 MEC中基于改进遗传模拟退火算法的虚拟网络功能部署策略[J]. 通信学报, 2020, 41 (4): 70- 80 CHEN Zhuo, FENG Gang, LIU Yi-jing, et al Virtual network function deployment strategy based on improved genetic simulated annealing algorithm in MEC[J]. Journal on Communications, 2020, 41 (4): 70- 80
doi: 10.11959/j.issn.1000-436x.2020074
|
|
|
[14] |
WHITT W The queueing network analyzer[J]. Bell System Technical Journal, 1983, 62 (9): 2779- 2815
doi: 10.1002/j.1538-7305.1983.tb03204.x
|
|
|
[15] |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
|
|
|
[16] |
WANG Z, TANG K, YAO X Multi-objective approaches to optimal testing resource allocation in modular software systems[J]. IEEE Transactions on Reliability, 2010, 59 (3): 563- 575
doi: 10.1109/TR.2010.2057310
|
|
|
[17] |
毕晓君, 王朝 一种基于参考点约束支配的NSGA-Ⅲ算法[J]. 控制与决策, 2019, 34 (2): 369- 376 BI Xiao-jun, WANG Chao A reference point constrained dominance-based NSGA-Ⅲ algorithm[J]. Control and Decision, 2019, 34 (2): 369- 376
|
|
|
[18] |
DEB K, AGRAWAL S. A niched-penalty approach for constraint handling in genetic algorithms[C]// Artificial Neural Nets and Genetic Algorithms. Vienna: Springer, 1999: 235-243.
|
|
|
[19] |
赵舵, 唐启超, 余志斌 一种采用改进交叉熵的多目标优化问题求解方法[J]. 西安交通大学学报, 2019, 53 (3): 66- 74 ZHAO Duo, TANG Qi-chao, YU Zhi-bin A solution to multi-objective optimization problem with improved cross entropy optimization[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 66- 74
|
|
|
[20] |
丁进良, 杨翠娥, 陈立鹏, 等 基于参考点预测的动态多目标优化算法[J]. 自动化学报, 2017, 43 (2): 313- 320 DING Jin-liang, YANG Cui-e, CHEN Li-peng, et al Dynamic multi-objective optimization algorithm based on reference point prediction[J]. Acta Automatica Sinica, 2017, 43 (2): 313- 320
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|