[1] 徐超. 基于格子Boltzmann方法的海流能水轮机翼型叶片水动力特性研究[D]. 山东:中国海洋大学, 2010. XU Chao. Research on hydrodynamics of marine current turbine's hydrofoil blades based on lattice Boltzmann method[D]. Shandong:Ocean University of China, 2010.
[2] 王英英. 基于格子Boltzmann方法的海流能水轮机大雷诺数模拟研究[D]. 山东:中国海洋大学, 2011. WANG Ying-ying. Research on lattice boltzmann simulation on high Reynolds number flow around marine current turbine[D]. Shandong:Ocean University of China, 2011.
[3] GOUNDAR J, AHEMD M. Design of a horizontal axis tidal current turbine[J]. Applied Energy, 2013, 111(11):161-174.
[4] BAHAJ A, MOLLAND A, CHAPLIN J, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable Energy, 2007, 32(3):407-426.
[5] BAHAJ A, MOLLAND A, CHAPLIN J, et al. Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines[J]. Journal of Engineering for the Maritime Environment, 2004, 218(2):127-138.
[6] BATTEN W, BAHAJ A, MOLLAND A, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Renewable Energy, 2008, 33(5):1085-1096.
[7] BATTEN W, BAHAJ A, MOLLAND A, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J]. Ocean Energy, 2007, 34(7):1013-1020.
[8] BAHAJ A, BATTEN W, MCCANN G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable Energy, 2007, 32(15):2479-2490.
[9] 容亮湾. 水轮机叶片水动力分析及翼型优化[D]. 哈尔滨:哈尔滨工程大学. 2006. RONG Liang-wang. Hydrodynamics analysis and airfoil optimization of turbine s blades[D]. Harbin:Harbin Engineering University. 2006.
[10] 董一帆, 李晔, 戴泽霖. 水平轴潮流能水轮机优化设计[C]//中国力学大会:2015论文摘要集. 上海:CCTAM, 2015. DONG Yi-fan, LI Ye, DAI Ze-lin. Optimal design of a horizontal axis marine current turbine[C]//The Chinese Congress of Theoretical and Applied Mechanics. Shanghai:CCTAM, 2015.
[11] GRASSO F. Design and optimization of tidal turbine airfoil[J]. Journal of Aircraft, 2012, 49(2):636-643.
[12] 朱国俊, 冯建军, 郭鹏程, 等. 基于径向基神经网络-遗传算法的海流能水轮机叶片翼型优化[J]. 农业工程学报, 2014, 30(8):65-73 ZHU Guo-jun, FENG Jian-jun, et al. Optimization of hydrofoil for marine current turbine based on radial basis function neural network and genetic algorithm[J]. Journal of Agricultural Engineering, 2014, 30(8):65-73
[13] 王宁, 黄彪, 吴钦, 等. 绕水翼空化流动及振动特性的试验与数值模拟[J]. 排灌机械工程学报, 2016, 34(4):321-327 WANG Ning, HUANG Biao, WU Qin, et al. Experimental and numerical simulation of vibration characteristics of hydrofoil in cavitating flow[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2016, 34(4):321-327
[14] DRELA M. XFOIL:an analysis and design system for low Reynolds number airfoils[J]. Lecture Notes in Engineering, 1989, 54:1-12.
[15] 李仁年, 陈寅. 尾缘厚度对风力机翼型气动性能的影响[J]. 流体机械, 2012, 40(4):13-15 LI Ren-nian, CHEN Yin. Effect of trailing edge thickness on aerodynamic performance[J]. Fluid Machinery, 2012, 40(4):13-15
[16] GOUNDAR J, AHMED M, LEE Y. Numerical and experimental studies on hydrofoils for marine current turbines[J]. Renewable Energy, 2012, 42(1):173-179.
[17] 陈进, 张石强, EECEN, 等. 风力机翼型参数化表达及收敛特性[J]. 机械工程学报, 2010, 46(10):132-138 CHEN Jin, ZHANG shi-qiang, EECEN, et al. Parametric representation and convergence of wind turbine airfoils[J]. Chinese Journal of Mechanical Engineering, 2010, 46(10):132-138
[18] 蒋传鸿. 风力机结冰翼型的气动性能分析及优化设计[D]. 重庆:重庆大学, 2014. JIANG Chuan-hong. Aerodynamic performance analysis and optimization design of wind turbine with iced airfoil[D]. Chongqing:Chongqing University, 2014.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C]//International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948.
[20] 李仁年, 毕祯, 黎义斌, 等. 诱导轮偏转角对离心泵叶轮空化性能的影响[J]. 排灌机械工程学报, 2016, 34(6):461-469 LI Ren-nian, BI Zhen, LI Yi-bin, et al. Effect of finducer deflection angle on impeller cavitation performance in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering(JDIME), 2016, 34(6):461-469 |