Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (12): 2349-2355    DOI: 10.3785/j.issn.1008-973X.2018.12.013
Hydraulic Engineering     
Multi-objective optimization of horizontal axis tidal current turbine using particle swarm optimization
ZHANG De-sheng1, LIU An1, CHEN Jian1, ZHAO Rui-jie1, SHI Wei-dong1,2
1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
2. College of Mechanical Engineering, Nantong University, Nantong 226019, China
Download:   PDF(1252KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-objective optimization method for airfoil performance based on particle swarm optimization (PSO) was proposed in order to improve the cavitation performance of blade airfoil of horizontal axis tidal current turbine. Optimization mainly aimed at the minimum surface pressure coefficient of airfoil at large attack angle. In order to ensure the hydrodynamic performance of airfoil at the same time, the multi-objective optimization function was established by parameters such as the lift coefficient of airfoil and the minimum of the pressure coefficient. To improve the optimization efficiency, the process analysis of the optimized airfoil pressure coefficient was taken by the program XFoil instead of the CFD analysis. The NACA63-815 airfoils were optimized by this method. The CFD method was used to study the comparison of the cavitation distributions between the optimized airfoils and the original airfoils at three cavitation numbers (1.0, 1.5 and 2.0) under two attack angles. Results show that the minimum pressure coefficient of the optimized airfoil increases by 17.0% and 45.8% and the maximum lift-to-drag ratio increased by 6.0% and 61.1%, at the angle of attack being 6.8° and 10.8°, respectively. The cavitation initial and full cavitation performance of the optimized airfoil is significantly improved and the hydrodynamic performance is also improved, which verifies the correctness of the optimization method.



Received: 11 December 2017      Published: 13 December 2018
CLC:  TH311  
Cite this article:

ZHANG De-sheng, LIU An, CHEN Jian, ZHAO Rui-jie, SHI Wei-dong. Multi-objective optimization of horizontal axis tidal current turbine using particle swarm optimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2349-2355.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.12.013     OR     http://www.zjujournals.com/eng/Y2018/V52/I12/2349


采用粒子群算法的水平轴潮流能水轮机翼型多目标优化

为了提高水平轴潮流能水轮机叶片翼型空化性能,提出一种基于粒子群算法(PSO)的翼型性能多目标优化方法,主要针对较大攻角下翼型表面压力系数最小值;同时为保证翼型水动力性能,以翼型压力系数最小值及升力系数等建立多目标优化函数.通过程序调用XFoil对优化翼型水动力性能进行过程分析,替代计算流体动力学(CFD)分析,节省优化时间.采用此方法对NACA63-815翼型进行优化并采用CFD方法重点研究2个攻角工况下优化翼型与原翼型在3个空化数(1.0、1.5和2.0)下的空泡分布对比.结果表明,优化翼型在6.8°和10.8°攻角下压力系数最小值分别提升了17.0%和45.8%,最大升阻比提高了6.0%和61.1%.翼型的空化初生及全空化性能均得到明显提升,水动力性能也得到了提升,验证了此优化方法的可行性.

[1] 徐超. 基于格子Boltzmann方法的海流能水轮机翼型叶片水动力特性研究[D]. 山东:中国海洋大学, 2010. XU Chao. Research on hydrodynamics of marine current turbine's hydrofoil blades based on lattice Boltzmann method[D]. Shandong:Ocean University of China, 2010.
[2] 王英英. 基于格子Boltzmann方法的海流能水轮机大雷诺数模拟研究[D]. 山东:中国海洋大学, 2011. WANG Ying-ying. Research on lattice boltzmann simulation on high Reynolds number flow around marine current turbine[D]. Shandong:Ocean University of China, 2011.
[3] GOUNDAR J, AHEMD M. Design of a horizontal axis tidal current turbine[J]. Applied Energy, 2013, 111(11):161-174.
[4] BAHAJ A, MOLLAND A, CHAPLIN J, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable Energy, 2007, 32(3):407-426.
[5] BAHAJ A, MOLLAND A, CHAPLIN J, et al. Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines[J]. Journal of Engineering for the Maritime Environment, 2004, 218(2):127-138.
[6] BATTEN W, BAHAJ A, MOLLAND A, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Renewable Energy, 2008, 33(5):1085-1096.
[7] BATTEN W, BAHAJ A, MOLLAND A, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J]. Ocean Energy, 2007, 34(7):1013-1020.
[8] BAHAJ A, BATTEN W, MCCANN G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable Energy, 2007, 32(15):2479-2490.
[9] 容亮湾. 水轮机叶片水动力分析及翼型优化[D]. 哈尔滨:哈尔滨工程大学. 2006. RONG Liang-wang. Hydrodynamics analysis and airfoil optimization of turbine s blades[D]. Harbin:Harbin Engineering University. 2006.
[10] 董一帆, 李晔, 戴泽霖. 水平轴潮流能水轮机优化设计[C]//中国力学大会:2015论文摘要集. 上海:CCTAM, 2015. DONG Yi-fan, LI Ye, DAI Ze-lin. Optimal design of a horizontal axis marine current turbine[C]//The Chinese Congress of Theoretical and Applied Mechanics. Shanghai:CCTAM, 2015.
[11] GRASSO F. Design and optimization of tidal turbine airfoil[J]. Journal of Aircraft, 2012, 49(2):636-643.
[12] 朱国俊, 冯建军, 郭鹏程, 等. 基于径向基神经网络-遗传算法的海流能水轮机叶片翼型优化[J]. 农业工程学报, 2014, 30(8):65-73 ZHU Guo-jun, FENG Jian-jun, et al. Optimization of hydrofoil for marine current turbine based on radial basis function neural network and genetic algorithm[J]. Journal of Agricultural Engineering, 2014, 30(8):65-73
[13] 王宁, 黄彪, 吴钦, 等. 绕水翼空化流动及振动特性的试验与数值模拟[J]. 排灌机械工程学报, 2016, 34(4):321-327 WANG Ning, HUANG Biao, WU Qin, et al. Experimental and numerical simulation of vibration characteristics of hydrofoil in cavitating flow[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2016, 34(4):321-327
[14] DRELA M. XFOIL:an analysis and design system for low Reynolds number airfoils[J]. Lecture Notes in Engineering, 1989, 54:1-12.
[15] 李仁年, 陈寅. 尾缘厚度对风力机翼型气动性能的影响[J]. 流体机械, 2012, 40(4):13-15 LI Ren-nian, CHEN Yin. Effect of trailing edge thickness on aerodynamic performance[J]. Fluid Machinery, 2012, 40(4):13-15
[16] GOUNDAR J, AHMED M, LEE Y. Numerical and experimental studies on hydrofoils for marine current turbines[J]. Renewable Energy, 2012, 42(1):173-179.
[17] 陈进, 张石强, EECEN, 等. 风力机翼型参数化表达及收敛特性[J]. 机械工程学报, 2010, 46(10):132-138 CHEN Jin, ZHANG shi-qiang, EECEN, et al. Parametric representation and convergence of wind turbine airfoils[J]. Chinese Journal of Mechanical Engineering, 2010, 46(10):132-138
[18] 蒋传鸿. 风力机结冰翼型的气动性能分析及优化设计[D]. 重庆:重庆大学, 2014. JIANG Chuan-hong. Aerodynamic performance analysis and optimization design of wind turbine with iced airfoil[D]. Chongqing:Chongqing University, 2014.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C]//International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948.
[20] 李仁年, 毕祯, 黎义斌, 等. 诱导轮偏转角对离心泵叶轮空化性能的影响[J]. 排灌机械工程学报, 2016, 34(6):461-469 LI Ren-nian, BI Zhen, LI Yi-bin, et al. Effect of finducer deflection angle on impeller cavitation performance in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering(JDIME), 2016, 34(6):461-469

No related articles found!