Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 531-541    DOI: 10.3785/j.issn.1008-973X.2022.03.012
    
Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy
Wan-liang WANG(),Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(1227KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-objective particle swarm optimization algorithm with multi-role and multi-strategy (MOPSO_RS) was proposed, in view of the immature convergence and poor diversity of particle swarm optimization in solving complex multi-objective problems. According to index-based role, the particles with different performances were assigned for different roles. A multi-strategy parameter adjustment method and global optimal particle selection method were proposed to help the population carry out various search mechanisms. Different learning parameters enabled particles with different performances to obtain different search strategies so as to adjust the exploration and exploitation capabilities of the particles. Different global optimal particles made particles search different regions to improve the search efficiency of the population. To avoid the algorithm from falling into the local optimal, a mutation operator with Gaussian function was introduced to make particles mutate toward different global optimal particles and increase accuracy of the algorithm. The experiment results indicate that MOPSO_RS has better convergence and diversity than other improved multi-objective optimization algorithms, and verifies the effectiveness of the proposed strategy.



Key wordsmulti-role      multi-objective optimization      particle swarm optimization algorithm      multi-strategy      convergence      diversity     
Received: 21 April 2021      Published: 29 March 2022
CLC:  TP 301  
Fund:  国家自然科学基金资助项目(61873240)
Cite this article:

Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.012     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/531


多角色多策略多目标粒子群优化算法

针对粒子群算法在解决复杂多目标问题时存在过早收敛和多样性不足的问题,提出多角色多策略多目标粒子群优化算法(MOPSO_RS). 该算法根据粒子的角色划分指标,给不同性能的粒子赋予不同角色;提出多策略的学习参数调整方法和多策略的全局最优粒子选取方法,帮助种群执行各种搜索策略. 不同的学习参数使各角色粒子获得不同的搜索策略,以调整粒子的探索和开发能力. 不同的全局最优粒子使各角色粒子搜索不同区域,提高种群的搜索效率. 为了避免算法陷入局部最优,引入带有高斯函数的变异算子,使粒子根据其角色朝向不同的全局最优粒子变异,提高算法的求解精度. 实验结果表明,对比其他改进多目标算法,MOPSO_RS具有良好的收敛性和多样性,并验证了所提策略的有效性.


关键词: 多角色,  多目标优化,  粒子群优化算法,  多策略,  收敛性,  多样性 
Fig.1 Extreme particle in non-dominated solution set
Fig.2 Global optimal particle graph selected by particles of different roles in before and after iteration
Fig.3 External file update
测试问题 MOEADCMA CAMOEA NSGAII MMOPSO CMOPSO MOPSO_RS
DTLZ1 2.068 6×10?2
(1.13×10?4) ?
2.136 4×10?2
(3.22×10?4) ?
2.739 6×10?2
(1.11×10?3) ?
1.157 7×10?1
(2.41×10?1) ?
7.869 8×10?1
(1.57×10+0) ?
2.026 2×10?2
(1.79×10?4)
DTLZ2 5.549 4×10?2
(3.97×10?4) +
5.706 2×10?2
(7.67×10?4) ?
6.902 1×10?2
(2.77×10?3) ?
7.143 9×10?2
(2.00×10?3) ?
5.803 3×10?2
(1.15×10?3) ?
5.595 1×10?2
(8.06×10?4)
DTLZ3 1.810 6×10+0
(3.39×10+0) ?
5.838 6×10?2
(3.03×10?3) ?
6.947 4×10?2
(2.78×10?3) ?
2.371 7×10?1
(3.61×10?1) ?
3.773 6×10+1
(2.67×10+1) ?
5.471 1×10?2
(7.28×10?4)
DTLZ4 9.455 3×10?2
(6.45×10?2) ?
5.734 0×10?2
(9.37×10?4) ?
9.490 2×10?2
(1.58×10?1) ?
7.185 8×10?2
(2.92×10?3) ?
6.037 4×10?2
(1.24×10?3) ?
5.629 6×10?2
(1.02×10?3)
DTLZ5 2.277 5×10?2
(5.66×10?5) ?
5.073 2×10?3
(1.53×10?4) ?
5.854 1×10?3
(3.42×10?4) ?
6.532 5×10?3
(9.75×10?4) ?
5.909 7×10?3
(7.55×10?4) ?
4.360 3×10?3
(9.46×10?5)
DTLZ6 2.288 7×10?2
(2.19×10?5) ?
4.633 2×10?3
(1.28×10?4) ?
5.882 0×10?3
(3.01×10?4) ?
6.889 7×10?3
(6.76×10?4) ?
4.215 9×10?3
(4.69×10?5) ?
4.084 1×10?3
(2.39×10?5)
DTLZ7 1.512 8×10?1
(5.13×10?3) ?
6.190 9×10?2
(1.64×10?3) =
7.584 4×10?2
(3.65×10?3) ?
1.206 6×10?1
(9.00×10?2) ?
1.554 6×10?1
(2.27×10?1) ?
6.176 5×10?2
(1.45×10?3)
WFG2 2.453 4×10?1
(1.67×10?2) ?
1.827 0×10?1
(7.41×10?3) ?
2.173 0×10?1
(9.22×10?3) ?
2.324 9×10?1
(1.28×10?2) ?
1.807 3×10?1
(6.13×10?3) ?
1.735 8×10?1
(4.34×10?3)
WFG4 3.312 3×10?1
(2.11×10?2) ?
2.329 7×10?1
(3.73×10?3) ?
2.788 7×10?1
(8.35×10?3) ?
3.113 3×10?1
(8.35×10?3) ?
2.670 6×10?1
(5.75×10?3) ?
2.275 9×10?1
(3.37×10?3)
WFG9 3.036 8×10?1
(2.52×10?2) ?
2.314 3×10?1
(4.11×10?3) ?
2.744 4×10?1
(1.20×10?2) ?
2.877 0×10?1
(2.18×10?2) ?
2.186 2×10?1
(3.26×10?3) =
2.172 7×10?1
(3.62×10?3)
+/?/= 1/9/0 0/9/1 0/10/0 0/10/0 0/9/1  
Tab.1 IGD results of MOPSO_RS and other five multi-objective algorithms for different test problems
测试问题 MOEADCMA CAMOEA NSGAII MMOPSO CMOPSO MOPSO_RS
DTLZ1 8.403 8×10?1
(6.88×10?4) ?
8.385 4×10?1
(9.40×10?4) ?
8.242 1×10?1
(3.70×10?3) ?
6.980 3×10?1
(2.85×10?1) ?
3.535 1×10?1
(3.69×10?1) ?
8.422 1×10?1
(4.05×10?4)
DTLZ2 5.564 4×10?1
(4.67×10?4) +
5.504 6×10?1
(2.22×10?3) +
5.314 8×10?1
(4.80×10?3) ?
5.302 2×10?1
(4.38×10?3) ?
5.412 1×10?1
(3.11×10?3) ?
5.487 1×10?1
(2.39×10?3)
DTLZ3 3.407 1×10?1
(2.59×10?1) ?
5.485 8×10?1
(5.15×10?3) ?
5.293 7×10?1
(5.93×10?3) ?
4.370 4×10?1
(1.98×10?1) ?
0.000 0×10+0
(0.00×10+0) ?
5.574 0×10?1
(2.56×10?3)
DTLZ4 5.450 3×10?1
(2.37×10?2) ?
5.515 7×10?1
(1.82×10?3) +
5.212 6×10?1
(8.00×10?2) ?
5.325 5×10?1
(5.42×10?3) ?
5.344 1×10?1
(2.78×10?3) ?
5.498 6×10?1
(2.70×10?3)
DTLZ5 1.904 1×10?1
(3.06×10?5) ?
1.991 7×10?1
(1.59×10?4) ?
1.991 4×10?1
(1.76×10?4) ?
1.991 9×10?1
(1.96×10?4) ?
1.981 3×10?1
(5.52×10?4) ?
1.996 5×10?1
(1.34×10?4)
DTLZ6 1.904 7×10?1
(9.91×10?6) ?
1.998 6×10?1
(1.22×10?4) ?
1.994 1×10?1
(1.52×10?4) ?
1.992 2×10?1
(1.63×10?4) ?
2.001 9×10?1
(3.10×10?5) +
2.000 9×10?1
(3.36×10?5)
DTLZ7 2.588 5×10?1
(7.17×10?4) ?
2.736 0×10?1
(1.65×10?3) ?
2.682 5×10?1
(2.10×10?3) ?
2.632 6×10?1
(9.77×10?3) ?
2.603 7×10?1
(2.14×10?2) ?
2.751 3×10?1
(9.04×10?4)
WFG2 9.007 6×10?1
(1.65×10?2) ?
9.291 7×10?1
(1.78×10?3) =
9.205 9×10?1
(2.43×10?3) ?
9.143 3×10?1
(3.78×10?3) ?
9.287 5×10?1
(1.41×10?3) =
9.289 7×10?1
(1.34×10?3)
WFG4 5.062 5×10?1
(1.68×10?2) ?
5.361 2×10?1
(3.13×10?3) +
5.023 6×10?1
(4.45×10?3) ?
4.811 8×10?1
(6.75×10?3) ?
4.840 6×10?1
(4.67×10?3) ?
5.253 2×10?1
(4.15×10?3)
WFG9 4.757 7×10?1
(2.81×10?2) ?
5.136 1×10?1
(4.23×10?3) =
5.039 3×10?1
(6.93×10?3) ?
4.995 9×10?1
(1.94×10?2) ?
5.173 0×10?1
(2.72×10?3) +
5.123 3×10?1
(5.13×10?3)
+/?/= 1/10/0 3/5/2 0/10/0 0/10/0 2/7/1  
Tab.2 HV results of MOPSO_RS and other five multi-objective algorithms for different test problems
Fig.4 Pareto front of some test problems of each algorithm
Fig.5 IGD of different partition threshold on DTLZ7
测试问题 目标数目 NSGA-III RSEA RVEA NMPSO MOPSO_RS
DTLZ1 5 6.337 6×10?2
(8.48×10?5) ?
7.611 1×10?2
(2.16×10?3) ?
6.332 7×10?2
(7.81×10?5) ?
6.512 3×10?2
(1.99×10?3) ?
5.870 5×10?2
(5.15×10?4)
10 1.493 3×10?1
(4.62×10?2) ?
1.524 3×10?1
(2.63×10?2) ?
1.334 2×10?1
(2.68×10?3) ?
1.687 7×10?1
(1.32×10?2) ?
1.100 4×10?1
(1.46×10?3)
15 2.030 2×10?1
(8.76×10?2) ?
2.009 3×10?1
(2.48×10?2) ?
1.334 4×10?1
(1.12×10?2) +
1.169 0×10+0
(3.60×10+0) ?
1.351 8×10?1
(3.20×10?3)
DTLZ2 5 1.949 0×10?1
(1.61×10?5) +
2.455 6×10?1
(1.99×10?2) ?
1.948 9×10?1
(8.54×10?6) +
2.162 3×10?1
(2.31×10?3) ?
2.099 2×10?1
(2.06×10?3)
10 4.904 3×10?1
(5.93×10?2) ?
5.338 5×10?1
(3.17×10?2) ?
4.533 6×10?1
(3.46×10?4) ?
4.230 0×10?1
(2.20×10?3) ?
4.198 4×10?1
(2.21×10?3)
15 6.904 7×10?1
(8.99×10?2) ?
6.701 9×10?1
(2.53×10?2) ?
5.269 7×10?1
(6.76×10?4) +
6.565 8×10?1
(7.27×10?2) ?
5.346 1×10?1
(3.80×10?3)
WFG2 5 4.712 8×10?1
(1.79×10?3) +
4.958 8×10?1
(1.39×10?2) +
4.484 9×10?1
(8.61×10?3) +
1.094 9×10+0
(2.08×10?1) ?
5.393 7×10?1
(2.20×10?2)
10 1.447 3×10+0
(1.34×10?1) ?
1.099 6×10+0
(3.44×10?2) ?
1.133 8×10+0
(3.09×10?2) ?
1.956 8×10+0
(1.94×10?1) ?
1.022 4×10+0
(1.94×10?2)
15 2.036 9×10+0
(1.06×10?1) ?
1.953 8×10+0
(2.25×10?1) ?
1.722 4×10+0
(1.15×10?1) ?
2.729 8×10+0
(2.71×10?1) ?
1.525 0×10+0
(3.04×10?2)
WFG4 5 1.176 6×10+0
(8.31×10?4) +
1.298 9×10+0
(2.67×10?2) =
1.177 3×10+0
(9.79×10?4) +
1.265 5×10+0
(2.30×10?2) +
1.292 6×10+0
(1.92×10?2)
10 4.769 4×10+0
(3.99×10?2) ?
4.877 3×10+0
(1.06×10?1) ?
4.633 0×10+0
(5.26×10?2) ?
4.219 0×10+0
(2.93×10?2) =
4.206 1×10+0
(3.27×10?2)
15 8.591 6×10+0
(5.17×10?1) ?
9.202 0×10+0
(2.42×10?1) ?
8.856 0×10+0
(1.90×10?1) ?
7.683 0×10+0
(5.87×10?2) =
7.658 9×10+0
(5.89×10?2)
WFG9 5 1.127 9×10+0
(6.02×10?3) +
1.256 2×10+0
(4.88×10?2) ?
1.149 7×10+0
(2.73×10?3) +
1.192 4×10+0
(1.66×10?2) +
1.223 0×10+0
(2.14×10?2)
10 4.521 1×10+0
(3.70×10?2) ?
4.808 5×10+0
(1.06×10?1) ?
4.467 2×10+0
(7.60×10?2) ?
4.147 5×10+0
(3.89×10?2) ?
4.100 5×10+0
(2.84×10?2)
15 8.127 9×10+0
(1.71×10?1) ?
9.053 4×10+0
(2.46×10?1) ?
7.460 2×10+0
(2.77×10?1) =
7.665 7×10+0
(1.06×10?1) ?
7.484 3×10+0
(7.46×10?2)
+/?/= 4/11/0 1/13/1 6/8/1 2/11/2
Tab.3  $ {\text{IGD}} $index results of MOPSO_RS and other four high-dimensional multi-objective algorithms on 5,10 and 15 objective test problems
测试问题 MOPSO_RS-OG MOPSO_R-G MOPSO_R MOPSO_RS
DTLZ3 5.437 4×10?2(1.86×10?3) + 5.471 2×10?2 (7.02×10?4) = 5.591 8×10?2 (2.65×10?3) ? 5.471 1×10?2 (7.28×10?4)
DTLZ4 5.793 9×10?2 (1.81×10?3) ? 5.746 1×10?2 (1.90×10?3) ? 5.690 1×10?2 (1.45×10?3) = 5.629 6×10?2(1.02×10?3)
DTLZ5 4.454 9×10?3 (1.24×10?4) ? 4.368 3×10?3 (1.23×10?4) = 4.423 6×10?3 (1.15×10?4) ? 4.360 3×10?3(9.46×10?5)
DTLZ6 4.107 9×10?3 (2.97×10?5) ? 4.120 2×10?3 (3.51×10?5) ? 4.125 3×10?3 (2.76×10?5) ? 4.084 1×10?3(2.39×10?5)
+/?/= 1/3/2 0/3/3 0/5/1
Tab.4 Effect of different strategies for IGD
[1]   公茂果, 焦李成, 杨咚咚, 等 进化多目标优化算法研究[J]. 软件学报, 2009, 20 (2): 271- 289
GONG Mao-guo, JIAO Li-cheng, YANG Dong-dong, et al Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20 (2): 271- 289
doi: 10.3724/SP.J.1001.2009.00271
[2]   王万良. 人工智能及其应用: 第4版[M]. 北京: 高等教育出版社, 2020: 240-252.
[3]   杨辉华, 谢谱模, 张晓凤, 等 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报:工学版, 2015, 49 (8): 1600- 1608
YANG Hui-hua, XIE Pu-mo, ZHANG Xiao-feng, et al Improved cuckoo search algorithm for multi-objective optimization problems[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1600- 1608
[4]   鲁建厦, 翟文倩, 李嘉丰, 等 基于改进混合蛙跳算法的多约束车辆路径优化[J]. 浙江大学学报:工学版, 2021, 55 (2): 259- 270
LU Jian-sha, ZHAI Wen-qian, LI Jia-feng, et al Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 259- 270
[5]   KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995, 4: 1942-1948.
[6]   REYES-SIERRA M, COELLO C C A Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2 (3): 287- 308
[7]   LIANG J J, QIN A K, SUGANTHAN P N, et al Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3): 281- 295
doi: 10.1109/TEVC.2005.857610
[8]   纪昌明, 马皓宇, 李宁宁, 等 基于树形结构无界存档的多目标粒子群算法[J]. 控制与决策, 2020, 35 (11): 2657- 2686
JI Chang-ming, MA Hao-yu, LI Ning-ning, et al Multi-objective particle swarm optimization algorithm based on tree-structured unbounded archive[J]. Control and Decision, 2020, 35 (11): 2657- 2686
[9]   HU W, YEN G Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (1): 1- 18
doi: 10.1109/TEVC.2013.2296151
[10]   韩红桂, 阿音嘎, 张璐, 等 自适应分解式多目标粒子群优化算法[J]. 电子学报, 2020, 48 (7): 1245- 1254
HAN Hong-gui, A Yin-ga, ZHANG Lu, et al Adaptive multiobjective particle swarm optimization based on decomposition archive[J]. Acta Electronica Sinica, 2020, 48 (7): 1245- 1254
doi: 10.3969/j.issn.0372-2112.2020.07.001
[11]   张庆科, 孟祥旭, 张化祥, 等 基于随机维度划分与学习的粒子群优化算法[J]. 浙江大学学报:工学版, 2018, 52 (2): 367- 378
ZHANG Qing-ke, MENG Xiang-xu, ZHANG Hua-xiang, et al Particle swarm optimization based on random vector partition and learning[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 367- 378
[12]   邱飞岳, 莫雷平, 江波, 等 基于大规模变量分解的多目标粒子群优化算法研究[J]. 计算机学报, 2016, 39 (12): 2598- 2613
QIU Fei-yue, MO Lei-ping, JIANG Bo, et al Multi-objective particle swarm optimization algorithm using large scale variable decomposition[J]. Chinese Journal of Computers, 2016, 39 (12): 2598- 2613
doi: 10.11897/SP.J.1016.2016.02598
[13]   刘彬, 刘泽仁, 赵志彪, 等 基于速度交流的多种群多目标粒子群算法研究[J]. 计量学报, 2020, 41 (8): 1002- 1011
LIU Bin, LIU Ze-ren, ZHAO Zhi-biao, et al Research on multi-population multi-objective particle swarm optimization algorithm based on velocity communication[J]. Acta Metrologica Sinica, 2020, 41 (8): 1002- 1011
doi: 10.3969/j.issn.1000-1158.2020.08.18
[14]   ZHANG X, TIAN Y, CHENG R, et al An efficient approach to nondominated sorting for evolutionary multiobjective[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (2): 201- 213
[15]   BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// International Conference on Management of Data. Dallas: [s. n.], 2000: 93-104.
[16]   XIA X, XING Y, WEI B, et al A fitness-based multi-role particle swarm optimization[J]. Swarm and Evolutionary Computation, 2018, 349- 364
[17]   韩敏, 何泳 基于高斯混沌变异和精英学习的自适应多目标粒子群算法[J]. 控制与决策, 2016, 31 (8): 1372- 1378
HAN Min, HE Yong Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning[J]. Control and Decision, 2016, 31 (8): 1372- 1378
[18]   DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
[19]   LI H, ZHANG Q, DENG J Biased multiobjective optimization and decomposition algorithm[J]. IEEE Transactions on Cybernetics, 2017, 47 (1): 52- 66
doi: 10.1109/TCYB.2015.2507366
[20]   HUA Y, JIN Y, HAO K A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular pareto fronts[J]. IEEE Transactions on Cybernetics, 2019, 49 (7): 2758- 2770
doi: 10.1109/TCYB.2018.2834466
[21]   LIN Q, LI J, DU Z, et al A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247 (3): 732- 744
doi: 10.1016/j.ejor.2015.06.071
[22]   ZHANG X, ZHENG X, CHENG R, et al A competitive mechanism based multi-objective particle swarm optimizer with fast convergence[J]. Information Sciences, 2018, 427: 63- 76
doi: 10.1016/j.ins.2017.10.037
[23]   DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
[24]   HE C, TIAN Y, JIN Y, et al A radial space division based evolutionary algorithm for many-objective optimization[J]. Applied Soft Computing, 2017, 61: 603- 621
doi: 10.1016/j.asoc.2017.08.024
[25]   LIN Q, LIU S, ZHU C, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems [J]. IEEE Transactions on Evolutionary Computation,2018, 22(1): 32-46.
[26]   CHENG R, JIN Y, OLHOFER M, et al A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (5): 773- 791
doi: 10.1109/TEVC.2016.2519378
[27]   ZHANG P, LI J, LI T, et al A new many-objective evolutionary algorithm based on determinantal point processes[J]. IEEE Transactions on Evolutionary Computation, 2020, 25 (2): 334- 345
[28]   LI M, YANG S, LIU X Shift-based density estimation for pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (3): 348- 365
doi: 10.1109/TEVC.2013.2262178
[1] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[2] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[3] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[4] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[5] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[6] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[7] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[8] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.
[9] Xin-yu YANG,Ye-fa HU. Maintenance, repair and overhaul/operations service resource scheduling optimization for complex products in uncertain environment[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 852-861.
[10] Hong-wu GUO,Lei PU,Yu-xie ZHANG,Jing WU,Rui ZHAO,Zhong-fu TAN. Optimization model for integrated complementary system of wind-PV-pump storage based on rough set theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 801-810.
[11] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1431-1443.
[12] BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1284-1293.
[13] GE Xiao-bo, XIE Liang, YANG Dong-wu, ZHANG Shu-xin, YANG Gui-geng. Electromechanical integrated design of large modular-truss mesh reflector[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 775-780.
[14] ZHANG De-sheng, LIU An, CHEN Jian, ZHAO Rui-jie, SHI Wei-dong. Multi-objective optimization of horizontal axis tidal current turbine using particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2349-2355.
[15] LU Yuan-yuan, WANG Hui, SONG Chun-yue. Integrated optimization method of scheduling and control in express/slow train[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 106-116.