Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (8): 1431-1443    DOI: 10.3785/j.issn.1008-973X.2018.08.001
Computer Technology     
New elastic collision optimization algorithm and its application in sensor cloud resource scheduling
LIU Zhou-zhou1,2, LI Shi-ning1, LI Bin1, WANG Hao3, ZHANG Qian-yun2, ZHENG Ran1
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Electronic Engineering, Xi'an Aeronautical University, Xi'an 710077, China;
3. Norwegian University of Science and Techchnology Aalesund, Norway 8730
Download:   PDF(1577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the low convergence accuracy and precocity of current intelligent optimization algorithms, a new intelligent optimization algorithm, elastic collision optimization (ECO) algorithm was proposed. Considering the elastic collision physics phenomenon, the changes of physical properties of objects during collision process were simulated, and three kinds of particle renewal mechanism were proposed, namely, collision with optimal individuals, collision with history optimal, and random collision. In order to effectively improve the optimization ability of complex and high dimensional optimization problems, an adaptive kernel fuzzy C-means (AKFCM) algorithm was designed and the ECO population was analyzed by AKFCM. By using the iterative comparison method, the automatic optimal clustering of the swarm was realized, and the rationality and diversity of the particle learning object were ensured. Quantitative analysis of population sample diversity showed that ECO still had good population diversity at the later stage. ECO was applied to the sensing cloud resource scheduling problem. The resource scheduling model of sensing cloud based on multi-objective optimization was constructed for the diversity management of sensing cloud systems, and the ECO particle coding was designed for the scheduling problem, which helped realize efficient scheduling and optimization of sensing cloud resources. The simulation results of multidimensional complex test function and sensor cloud resource scheduling show that ECO has higher convergence accuracy and success rate, and effectively reduces the energy consumption and task length of sensing cloud resource scheduling.



Received: 25 September 2017      Published: 23 August 2018
CLC:  TP391  
Cite this article:

LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1431-1443.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.08.001     OR     http://www.zjujournals.com/eng/Y2018/V52/I8/1431


基于弹性碰撞优化算法的传感云资源调度

针对当前智能优化算法普遍存在收敛精度不高、容易“早熟”的缺陷,提出全新的智能优化算法—弹性碰撞优化(ECO)算法.算法基于弹性碰撞物理学现象,通过模拟碰撞过程中物理属性相互影响的变化过程,抽象出“与种群最优碰撞”、“与自身历史最优碰撞”和“随机碰撞”3种粒子更新机制.为了有效提升复杂高维优化问题的寻优能力,设计自适应核模糊C-均值聚类(AKFCM)算法,利用AKFCM对ECO种群进行聚类分析,通过迭代比对策略实现种群自动最佳聚类划分,确保粒子学习对象的合理性与多样性.种群样本多样性定量分析表明ECO在运算后期具有较好的种群多样性.将ECO应用于传感云资源调度问题,为了满足传感云系统管理多样性需求,构建多目标优化传感云资源调度模型,设计符合调度问题的ECO粒子编码方式,实现传感云资源高效率调度优化.多维复杂测试函数以及传感云资源调度实例仿真结果表明,ECO具有较高的收敛精度和成功率,有效降低了传感云资源调度的能耗和任务长度.

[1] 李智勇, 陈少淼, 杨波, 等. 异构云环境多目标Memetic优化任务调度方法[J]. 计算机学报, 2016, 39(2):377-390 LI Zhi-yong, CHEN Shao-miao, YANG Bo, et al. Multi-objective Memetic algorithm for task scheduling on heterogeneous cloud[J]. Chinese Journal of Computers, 2016, 39(2):377-390
[2] 王晓辉, 吴禄慎, 陈华伟, 等. 应用改进的粒子群优化模糊聚类实现点云数据的区域分割[J]. 光学精密工程, 2017, 25(4):563-573 WANG Xiao-hui, WU Lu-shen, CHEN Hua-wei, et al. Region segmentation of point cloud data based on improved particle swarm optimization fuzzy clustering[J]. Optics and Precision Engineering, 2017, 25(4):563-573
[3] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life. France:Elsevier Publishing, 1991:134-142
[4] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948
[5] TAN Y, ZHU Y. Fireworks algorithm for optimization[C]//Proceedings of the 1st International Conference on Advances in Swarm Intelligence. Springer-Verlag, 2010:355-364
[6] 李淑英, 潘亚, 费薇, 等. 基于分组遗传算法的虚拟机放置方法[J]. 南京理工大学学报, 2016, 40(6):322-327 LI Shu-ying, PAN Ya, FEI Wei, et al. Virtual machine placement method based on grouping genetic algorithm[J]. Journal of Nanjing University of Science and Technology, 2016, 40(6):322-327
[7] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.
[8] 田瑾. 高维多峰函数的量子行为粒子群优化算法改进研究[J]. 控制与决策, 2016, 31(11):1967-1972 TIAN Jin. Improvement of quantum-behaved particle swarm optimization algorithm for high-dimensional and multi-modal functions[J]. Control and Decision, 2016, 31(11):1967-1972
[9] 马卫, 孙正兴. 采用搜索趋化策略的布谷鸟全局优化算法[J]. 电子学报, 2015, 43(12):2429-2439 MA Wei, SUN Zheng-xing. A global cuckoo optimization algorithm using coarse-to-fine search[J]. Chinese Journal of Electronics Acta Electronica Sinica, 2015, 43(12):2429-2439
[10] 崔晓晖, 印桂生, 董红斌. 面向服务匹配问题的协同演化算法[J]. 软件学报, 2015, 26(7):1601-1614 CUI Xiao-hui, YIN Gui-sheng, DONG Hong-bin. Co-evolutionary algorithm for Web service matching[J]. Journal of Software, 2015, 26(7):1601-1614
[11] EBRAHIMI D, ASSI C. Network coding-aware compressive data gathering for energy-efficient wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2015, 11(4):1-24.
[12] 曾建电, 王田, 贾维嘉, 等. 传感云研究综述[J]. 计算机研究与发展, 2017, 54(5):925-939 ZENG Jian-dian, WANG Tian, JIA Wei-jia, et al. A survey on sensor-cloud[J]. Journal of Computer Research and Development, 2017, 54(5):925-939
[13] MADRIA S, KUMAR V, DALVI R. Sensor cloud:a cloud of virtual sensors[J]. IEEE Software, 2014, 31(2):70-77.
[14] TIAN F G, CHEN K K. Towards optimal resource provisioning for running mapreduce programs in public clouds[C]//Proceedings of IEEE International Conference on Cloud Computing, Washington:IEEE, 2011:155-162
[15] CHohan N, Castillo C, Spreitzer M, et al. See spot run:using spot instances for map-reduce workflows[C]//Proceeding of the 2nd Usenix Conference on Hot Topics in Cloud Computing. USENIX Association, 2011:7
[16] MA A L, ZHONG Y F, ZHANG L P. Adaptive multiplicative memetic fuzzy clustering algorithm for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4202-4217.
[17] TAN K L. What's next?:sensor+cloud?[C]//Proceedings of the 7th ACM International Workshop on Data Management for Sensor Network. New York:ACM, 2010:1
[18] KUNCHEVA L. Clustering date[DB/OL].[2014-09–10]. http://pages.bangor.ac.uk/~mas00a/activities/artificial_data.html
[19] 陈海鹏, 申铉京, 龙建武, 等. 自动确定聚类个数的模糊聚类算法[J]. 电子学报, 2017, 45(3):687-694 CHEN Hai-peng, SHEN Xuan-jing, LONG Jian-wu, et al. Fuzzy clustering algorithm for automatic identification of clusters[J]. Acta Electronica Sinica, 2017, 45(3):687-694
[20] 林济铿, 刘露, 张闻博, 等. 基于随机模糊聚类的负荷建模与参数辨识[J]. 电力系统自动化, 2013, 37(14):50-57 LIN Ji-keng, LIU Lu, ZHANG Wen-bo, et al. Load modeling and parameter identification based on random fuzziness clustering[J]. Automation of Electric Power Systems, 2013, 37(14):50-57
[21] 朴尚哲, 超木日力格, 于剑. 模糊C均值算法的聚类有效性评价[J]. 模式识别与人工智能, 2015, 28(5):452-461 PIAO Shang-zhe, CHAOMURILIGE, YU Jian. Cluster validity indexes for FCM clustering algorithm[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(5):452-461
[22] 魏蔚, 刘扬, 杨卫东. 一种通用云计算资源调度问题的快速近似算法[J]. 计算机研究与发展, 2016, 53(3):697-703 WEI Wei, LIU Yang, YANG Wei-dong. A fast approximation algorithm for the general resource placement problem in cloud computing platform[J]. Journal of Computer Research and Development, 2016, 53(3):697-703
[23] XU Y, LI K, HE L, et al. A DAG scheduling scheme on heterogeneous computing systems using double molecular structure based chemical reaction optimization[J]. Journal of Parallel and Distributed Computing, 2013, 73(9):1306-1322.
[24] CAO J, LI K, STOJMENOVIC I. Optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers[J]. IEEE Transactions on Computers, 2014, 63(1):45-58.

[1] HAN Yong, NING Lian-ju, ZHENG Xiao-lin, LIN Wei-hua, SUN Zhong-yuan. Matrix factorization recommendation based on social information and item exposure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 89-98.
[2] ZHENG Zhou, ZHANG Xue-chang, ZHENG Si-ming, SHI Yue-ding. Liver segmentation in CT images based on region-growing and unified level set method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2382-2396.
[3] ZHAO Li-ke, ZHENG Shun-yi, WANG Xiao-nan, HUANG Xia. Rigid object position and orientation measurement based on monocular sequence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2372-2381.
[4] HE Jie-guang, PENG Zhi-ping, CUI De-long, LI Qi-rui. Teaching-learning-based optimization algorithm with local dimension improvement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2159-2170.
[5] LI Zhi, SHAN Hong, MA Tao, HUANG Jun. Group discovery of mobile terminal users based on reverse-label propagation algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2171-2179.
[6] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[7] WEI Xiao-feng, CHENG Cheng-qi, CHEN Bo, WANG Hai-yan. Chain code based on independent edge number[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1686-1693.
[8] CHEN Rong-hua, WANG Ying-han, BU Jia-jun, YU Zhi, GAO Fei. Website accessibility sampling evaluation based on KNN and local regression[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1702-1708.
[9] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1804-1810.
[10] WANG Yong-chao, ZHU Kai-lin, WU Qi-xuan, LU Dong-ming. Adaptive display technology of high precision model based on local rendering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1461-1466.
[11] SUN Nian, LI Yu-qiang, LIU Ai-hua, LIU Chun, LI Wei-wei. Microblog sentiment analysis based on collaborative learning under loose conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1452-1460.
[12] ZHENG Shou-guo, CUI Yan-min, WANG Qing, YANG Fei, CHENG Liang. Design of field data acquisition platform for aircraft assembly[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1526-1534.
[13] BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1284-1293.
[14] ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai. Super-resolution reconstruction for three-dimensional core CT image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1294-1301.
[15] YU Yong, ZHOU Yang, CAO Peng, ZHAO Gang. In-process model construction method based on model-based definition model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1025-1034.